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ABSTRACT

IN THE LETTER, WE STUDY A PERTURBED BENJAMIN-BONA-MAHONY NONLINEAR EQUATION, WHICH WAS DERIVED FOR DESCRIBING SHALLOW WATER WAVES AND POSSESSING A 
RICH LIE SYMMETRY STRUCTURE. BASED ON THE GRADIENT-HOLONOMIC INTEGRABILITY CHECKING SCHEME APPLIED TO THIS EQUATION, WE HAVE ANALYTICALLY CONSTRUCTED ITS 
INFINITE HIERARCHY OF CONSERVATION LAWS, DERIVED TWO COMPATIBLE POISSON STRUCTURE AND STATED ITS COMPLETE INTEGRABILITY.
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Introduction 

The well-known Benjamin-Bona-Mahony (BBM) equation

=0,t x x xxtu u uu u                (1.1)

Where  (R;R)u C is a smooth real-valued function, 

symbols ..." "xtu  denote its partial derivatives with respect to 

spatial x  R and temporal t  R parameters, describe nonlinear 
waves on shallow water and were derived for the fi rst time in   
[1] and reintroduced later in [2]. It was recently mentioned   
[3] that, as this equation lacks a Galilean symmetry and loses 
some important properties, this equation (1.1) was suitably 
perturbed with some higher order terms that helped to 
recover this symmetry, yet this remedy appeared to lead to the 
simultaneous loss of the presence of the energy conservation 
law.  A more detailed analysis of this aspect led the authors of 
the recent work   [4] to study the following perturbed version 
of the equation  (1.1):

= ( 2 )t xxt x x xxx x xxu u u uu uu u u                (1.2)

For different real parameters   R, where they stated by 
means of standard computer-assisted Lie symmetry analysis   
[5] that at the value  = 1/3 the evolution fl ow  (1.2) possesses 
a wide hierarchy of Lie symmetries and additionally a one Lie-
Backlund  [5] symmetry 

3/2
=

[2( ) 3]
x xxx

xx

u u
u

u u


 

             (1.3)

With respect to an evolution parameter   R. Moreover, 
based on analysis of the calculated symmetries, the authors of 
the work    [4] show that the fl ow  (1.2) is Hamiltonian: 

2 3 2
1 1

1= [ ], = [ 1 /3( )] ,
2t xu gradH u H u u uu dx               (1.4)

With respect to the Poisson operator 

1 1:=( ) ,                    (1.5)

Where, by defi nition,    := / , R,x x  and put forward a 
hypothesis that the evolution fl ow  (1.2) is closely related to the 
well known Camassa-Holm equation   [6,7] and is  a completely 
integrable   [8-10] Hamiltonian system.
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Our Letter is devoted to strong analytical proving this 
hypothesis both for the Hamiltonian system  (1.4) and its 
symmetry fl ow  (1.3).

Integrabil ity analysis

First   we   observe that  the perturbed nonlinear BBM [2] 
type equation  (1.2) being equivalent to the nonlinear dynamical 
system 

2 1= (1 ) [ 1 /3( 2 ):= [ ]t x x x xxx x xxu u uu uu u u F u                  (2.1)

On a functional manifold M   (R;R)C of smooth real 

valued functions, possesses as its symmetry the evolution fl ow 

3
3/2

= := [ ],
[2( ) 3]

x x

xx

u u
u K u

u u



 
            (2.2)

Which jointly with   (2.1) are commuting to each other, that 
is    

  
 , =0K F               (2.3)

For all smooth functions u  M. Moreover, it is easy to check 

that the fl ows  (2.1) and  (2.2) above  reduce via the argument 

transformation ( , ) ( 1 /2 , ) 3 /2u x t v x t t    for all (x,t)  R×R to 

the following equivalent Hamiltonian forms: 

1 1 2 2
1 1 1

1= ( ) [ ]:= [ ]:= [ ], := ( )( /3 1) ,
2t xv gradH v gradH v F v H v v v dx         

                (2.4)

With respect to the evolution parameter t  R and 

2 2

1= = [ ]:= [ ], =2 ,xx

xx

v gradH v K v H v v dx
x v v

 
     
   

  

               (2.5)

With respect to the evolution parameter   R, respectively, 

where the skew-symmetric Poisson operator : ( ) ( )T M T M  

naturally acts as a pseudo-differential expression  [11,12] from 
the cotangent space T*(M) to the tangent space T(M) over the 
functional Poisson manifold M and determines the related 
Poisson bracket 

{, } :=( ( )| ( ))grad grad                  (2.6)

Over the space of functionals on M endowed with the 

natural bilinear form    ( | ): ( ) ( ) R.T M T M  

Being interested in proving the suspected complete 
integrability of these fl ows, we take into account that the fl ows  
(2.4) and  (2.5) commute to each other, thus yielding that it is 
enough to check the integrability of the second looking more 
simply fl ow  (2.5) on a smooth functional manifold M and show 
that the fi rst fl ow  (2.1) enters into a innfi nite hierarchy of 
commuting to each other Hamiltonian fl ows generated by the 
second fl ow  (2.5).  Within the nowadays existing three effective 
enough integrability checking schemes  [13-15], we stopped on 
the gradient-holonomic integrability checking scheme   [14], 
within which one needs   fi rst    [16,17] to fi nd an asymptotic 

solution to a  Baker-Akhiezer type function (x;)  T*(M), 

  ,  defi ned   [8,9,14,18] on the spectrum  of a suitably 

chosen Lax type   [8,10,18] operator, equivalent to the recursion 

operator : T*(M) → T*(M), being its eigenfunction with some 

iso-spectral eigenvalue, whose value does not matter for 
us. This, in particular, means that the following functional-
operator equations on the manifold M are compatible:

( ; )= ( ) ( ; )x x                   (2.7)

and 

,
/ =[ , ],

'
d dt K


              (2.8)

Where the latter follows from the determining Lax-Noether 
linear equation 

,
=0'

t K 


            (2.9)

And the Magri type   [14,15,19] symmetry hereditary 
property, whose asymptotic  → ∞   solution is in general 
representable as 

         
      3 1 1 1 2
1 0 1 2è exp[ ( ...)],t          (2.10)

Where the functionals 

:= [ ]j j v dx                (2.11)

Are, by construction, the corresponding conservation laws 
of the Hamiltonian system  (2.5), that is

= [ ]

=0j
v K vt

d
dt



 

           (2.12)

For all   Z { 1}j .  In particular, one easily obtains 
recurrently that

1
3

1 0

1=2 , = ln( ),
2xx xx

dv v v v
dx

             (2.13)

  2 2 2 2

1 10 5
3 2

8 13 26 12 16 13 4
=

3 2 ( )

xx xxxx xxx x xxx xx xx x

xx

v v v v v v v vv v v

v v


      

 

Whence conservation laws equal 

1/3 1/3
1 2 0

1=2 =2 , = ln( ) =0,
2xx xx

dv v dx H v v dx
dx

      

              (2.14)

  2 2 2 2

1 10 5
3 2

8 13 26 12 16 13 4
= ,...,

3 2 ( )

xx xxxx xxx x xxx xx xx x

xx

v v v v v v v vv v v
dx

v v


      

 


And so on.  Moreover, as these conservation laws naturally 
generate an infi nite hierarchy of commuting to each other 
Hamiltonian fl ows 

1 1:= ( ) [ ]:= [ ], [ , ]=0,t x x j j j sj
v grad v K v K K             (2.15)

as well as 



024

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Vovk MI, Pukach PY, Prykarpatski AK (2023) A remark on a perturbed Benjamin-Bona-Mahony type equation and its complete integrability. Ann Math Phys 
6(1): 021-025. DOI: https://dx.doi.org/10.17352/amp.000071

{ , }=0j s            (2.16)

For all   , Z { 1}j s  with respect to the  related evolution 

parameters    R, Z { 1},jt j we can deduce that our dynamical 

system (2.5) and respectively, its commuting symmetry - the 
system (2.4), are jointly integrable Hamiltonian fl ows on 
the functional manifold M. Taking into account the resulting 
existence of the recursion operator  : T*(M) → T*(M), 
satisfying the second equation of  (2.5) and related gradient 
recursion relationships 

2=j jgrad grad              (2.17)

For all,   Z { 1},j  we also naturally derive the existence 
of the second Poisson operator 

:= : ( ) ( ),T M T M              (2.18)

Compatible   [10,17,18] with the fi rst Poisson operator 

: ( ) ( )T M T M   on the functional manifold M, that is the sum 

( ): ( ) ( )T M T M     persists to be Poissonian for all   R.  
The exact expression for the second Poisson operator is easily 
obtained from the operator relationship, naturally following 
from the Lax-Noether equation  (2.9) in the case when its 
solution   T*(M) is not symmetric, that is ,' '    on the 
whole manifold M. It is easy to check that the conservation law 

2 2
1

1= ( )( /3 1)
2 xH v v v dx   can be represented in the following 

equivalent form

1 2 1
1 1=(1 /3 1 /3 | ) ( | ):=( | )x x x x xH v v v v v v v v               (2.19)

With respect to the standard bilinear form 
   ( | ): ( ) ( ) RT M T M  on the product ( ) ( ),T M T M    where 

1 2 1
1 = 1 /3 1 /3 ( )x xv v v v v T M          does satisfy the Lax-

Noether equation  (2.9): 
,

=0 ( )'
t K modgradL 


  for some 

smooth function L: M→ R on the whole manifold M Then, it is 

easy to observe that the operator 

 1 , 1 1 1
1 1 1= =2 1 /3( ) 2 /3( )=' ' v v v v                   

            (2.20)
1 1 1=2 2 /3( 2 ).v v v v       

Is a priori symplectic on the functional manifold M  jointly 
with the expression 

1 1 1= 2 ,v v v v               (2.21)

Since a linear combination of symplectic operators, if 
nondegenerate, is always   [20,21] symplectic.  The usual way one 

check that the operators    ,  : ( ) ( )T M T M are, as expected, 

compatible with M, that is the operator     1 1,  : ( ) ( )T M T M  

proves to be also symplectic. Similarly one can fi nd that 

1
2 2

2=2 :=( | )= ( ) ,xx x x

xx

H v v dx v v
v v

 
  
     
    

        (2.22)

Providing the generating element 

1
2

2=( ) ( ),
xx

T M
v v

  
 
    
  

 which gives rise to the 

second compatible symplectic operator 

1 , 1 1
2 2 2 3/2 3/2

1 1= =( ) ( ).
( ) ( )

' '

xx xxv v v v
      

             
 

                           (2.23)

Moreover, as there holds the representation 1 1 1
2 3= ,       

we easily derive that the operator expression 

3 3/2 3/2

1 1=
( ) ( )xx xxv v v v

   
 

          (2.24)

Presents the third compatible Poisson operator 

: ( ) ( )T M T M    for the Hamiltonian system  (2.5) on the 

functional manifold M  and determines the recursion operator 

1 1 1 1 1= = 2 )( ) ,v v v v                      (2.25)

Satisfying the relationships  (2.17), which can be naturally 

extended back to the negative values of indices j  Z: 

2.=j jgrad grad             (2.26)

In particular, one can calculate that  1
1 3= ,grad grad 
   

where 3 1= ,H   yielding right away that the Hamiltonian 

fl ow  (2.4) possesses an infi nite hierarchy of commuting to 
each other conservation laws  (2.14), thus being a completely 
integrable Hamiltonian system on the manifold M.

Thus, we have stated the following summarizing 
integrability theorem.

Theorem 2.1 The nonlinear dynamical systems (2.4) and (2.5) 
possess a common infi nite hierarchy of commuting to each other 
conservation laws (2.14) with respect to both Poisson brackets 
(1.5) and (2.21), thus presenting on the smooth functional Poisson 
manifold M related to each other completely integrable bi-
Hamiltonian systems. 

As a natural conclusion from the presented above 
integrability analysis of the perturbed nonlinear BBM type 
equation  (1.2), one can state the true analytical effectiveness 
of the gradient-holonomic integrability checking scheme.  Its 
implementing too many other nonlinear dynamical systems, 
possessing a rich Lie symmetry structure, and modeling diverse 
evolution phenomena in physical and biological sciences, is 
expected to be both mathematically attractive and useful.
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