Commentary

Comment: Paper on the progress of pure mathematics "proof of 3x + 1 conjecture"

Ling Xie*

Institute of Cosmic Mathematical Physics, Basic Concept Definition Discipline Room, Dongkou Bamboo City Center Hospital in Hunan Province, China

Received: 07 February, 2022
 Accepted: 20 May, 2024

Published: 21 May, 2024
*Corresponding author: Ling Xie, Institute of Cosmic Mathematical Physics, Basic Concept Definition Discipline Room, Dongkou Bamboo City Center Hospital in Hunan Province, China, E-mail: 29997609@qq.com, xieling1968@hotmail.com

Keywords: 3X+1 conjecture; Logical error
Copyright License: © 2024 Xie L. This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
https://www.mathematicsgroup.us
Check for updates

Abstract

The unresolved problem in number theory: the $3 x+1$ problem, deeply loved by math enthusiasts. I saw a paper titled "Proof of $3 x+1$ Conjecture" in the Journal of Pure Mathematical Progress (ISSN Print: 2160-0368), and its proof was incorrect.

Introduction

The $3 \mathrm{x}+1$ problem $[1,2]$ is one of the unsolved problems in number theory.

A lot of people have been attracted to solving the problem.
Paper in the Journal of Pure Progress in Mathematics on "Proof of the $3 \mathrm{X}+1$ Conjecture" [3], the proof of it [3] is incorrect.

There are two errors, the first is a correctable error and another is a fatal mistake.

Detailed comments

Modifiable errors

Extraction part (i): See the top section on page 15 [3].
Proposition 1: $4^{r} \in C_{4}\left(r \in Z^{+}\right)$, and its row number $n=4^{r-1}-\frac{4^{r-1}-1}{3}$.
Proof : $\because 4^{r}-4=4\left(4^{r-1}-1\right)=4\left[\left(2^{r-1}\right)^{2}-1\right]=4\left(2^{r-1}+1\right)\left(2^{r-1}-1\right)$
$3 \mid\left(2^{r-1}+1\right) \cdot 2^{r-1} \cdot\left(2^{r-1}-1\right)$, but $3 \mid 2^{r-1}$.
$\therefore 3 \mid\left(2^{r-1}-1\right)\left(2^{r-1}+1\right)$.
$\therefore 6 \mid 4\left(2^{r-1}-1\right)\left(2^{r-1}+1\right)$.
Let $4^{r}-4=6(n-1)\left(n \in Z^{+}\right)$.
$\therefore 4^{r}=6(n-1)+4$.
$\therefore 4^{r} \in C_{4}$.
$\because r \in Z^{+}$
$\therefore\left\{3 \mid\left(2^{r-1}+1\right) \times\left(2^{r-1}\right) \times\left(2^{r-1}-1\right)\right\}$ Inaccurate
$\because r=1 \in\left\{r \in Z^{+}\right\}$
$\Rightarrow\left(2^{1-1}+1\right) \times\left(2^{1-1}\right) \times\left(2^{1-1}-1\right) \neq$ An integral multiple of 3
Only : $1<\mathrm{r} \in \mathrm{Z}^{+}$
$\Rightarrow\left\{3 \mid\left(2^{\mathrm{r}-1}+1\right) \times\left(2^{\mathrm{r}-1}\right) \times\left(2^{\mathrm{r}-1}-1\right)\right.$
Correction method: setting $1<\mathrm{r} \in \mathrm{Z}^{+}$

Non-modifiable fatal errors

Extraction part (ii): See the lower end of page 11 and the upper end of page 12 .
$\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 6 n-5 & 6 n-4 & 6 n-3 & 6 n-2 & 6 n-1 & 6 n \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}\right) \Rightarrow\left(\begin{array}{l}4 \\ 10 \\ \ldots \\ 6 n-2 \\ \ldots\end{array}\right)$

The fourth column in Figure (ii): 6n-2
$\{4,10,16,22,28,34,40,46,52,58,64, \ldots,(6 n 1-2), \ldots\} \in(6 n-2)$
(1)

The first line, $n=1,(6 n-2)=4$
The second line, $n=2,(6 n-2)=10$
The third line, $n=3,(6 n-2)=16$

The author takes n as the serial number of each line
The original author added: $(6 n-2)=6(n-1)+4$, This is correct

Author's formula: $4^{\mathrm{r}}=6(\mathrm{n}-1)+4$, There will be mistakes.
Extraction part (iii): See the top section on page 15.

$$
\begin{aligned}
& \therefore 4^{r}=6(n-1)+4 \\
& \therefore 4^{r} \in C_{4}
\end{aligned}
$$

The following mathematical induction proves that row number of 4^{r} is $4^{r-1}-\frac{4^{r-1}-1}{3}\left(r \in Z^{+}\right)$.

Proof: 1) As $r=1, n=4^{1-1}-\frac{4^{1-1}-1}{3}=1$, the conclusion
correct. is correct.
2) It is assumed that the conclusion is correct as $r=s\left(s \in Z^{+}\right.$, $s \geq 1$), that is

$$
\begin{equation*}
4^{s}=6\left(4^{s-1}-\frac{4^{s-1}-1}{3}-1\right)+4 . \tag{iii}
\end{equation*}
$$

Let's look at $\mathrm{n}=2$. The second line gets: $4^{\mathrm{r}}=6(\mathrm{n}-1)+4=10$

$$
\Rightarrow 4^{\mathrm{r}}=10 \Rightarrow \mathrm{r} \notin Z^{+}
$$

Conflict with $\mathrm{r} \in \mathrm{Z}^{+}$. See: (i).
Let's look at $\mathrm{n}=3$. The second line gets: $4^{\mathrm{r}}=6(\mathrm{n}-1)+4=16$
$\Rightarrow 4^{\mathrm{r}}=16 \Rightarrow 2=\mathrm{r} \in \mathrm{Z}^{+}$

Let's look at $\mathrm{n}=4$. The second line gets: $4^{\mathrm{r}}=6(\mathrm{n}-1)+4=22$
$\Rightarrow 4^{\mathrm{r}}=22 \Rightarrow \mathrm{r} \notin \mathrm{Z}^{+}$
Conflict with $\mathrm{r} \notin \mathrm{Z}^{+}$.See: (i).
The truth is:
From formula (1):
$\left\{4,10,16,22,28,34,40,46,52.58,64, \ldots,\left(6 n_{1}-2\right), \ldots\right\} \in(6 n-2)$
$\left\{4,10,16,22,28,34,40,46,52.58,64, \ldots,\left(6 n_{1}-2\right), \ldots\right\} \in(6 n-2)$ $\notin 4^{\mathrm{r}}$.
$(6 n-2)=6(n-1)+4 \nRightarrow\left\{4,16,64, \ldots 4^{n}, \ldots\right\} \in 4^{r}$
Many numbers are missing: $\{10,22,28,34,40,46,52,58, \ldots\}$
$\{10,22,28,34,40,46,52,58, \ldots\} \notin 4^{\mathrm{r}}$.
$\therefore 4^{\mathrm{r}} \neq 6(\mathrm{n}-1)+4=6 \mathrm{n}-2$
$\therefore 4^{\mathrm{r}} \notin \mathrm{C}_{4}$
When the author [1] chooses n as the serial number and ($1<\mathrm{r} \in \mathrm{Z}^{+}$) cannot obtain:

$$
6(n-1)+4=4^{r} \in C_{4}
$$

Get: The author did not prove $(3 \mathrm{X}+1)$.

Conclusion

If in [3] the author corrects the second error, then [3] the author's method cannot prove ($3 \mathrm{X}+1$).

References

1. Guy RK. Unsolved Problems in Number Theory: The $3 x+1$ Problem. Springer Verlag, New York. 2007; 330-336.
2. Lagarias JC. The $3 x+1$ Problem and Its Generalizations. Am Math Monthly. 1985; 92:3-23. https://doi.org/10.1080/00029890.1985.11971528.
3. Wang MZ, Yang YB, He ZX, Wang MY. The Proof of the $3 X+1$ Conjecture. Adv Pure Math. 2022; 12:10-28. DOI: https://doi.org/10.4236/apm.2022.121002.

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

Highlights

* Signatory publisher of ORCID
* Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
* Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
* Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
* OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
* Dedicated Editorial Board for every journal
* Accurate and rapid peer-review process
* Increased citations of published articles through promotions
* Reduced timeline for article publication

Submit your articles and experience a new surge in publication services https://www.peertechzpublications.org/submission

