Comment: Paper on the progress of pure mathematics "proof of 3x + 1 conjecture"
ISSN: 2689-7636
Annals of Mathematics and Physics
Commentary       Open Access      Peer-Reviewed

Comment: Paper on the progress of pure mathematics "proof of 3x + 1 conjecture"

Ling Xie*

Institute of Cosmic Mathematical Physics, Basic Concept Definition Discipline Room, Dongkou Bamboo City Center Hospital in Hunan Province, China
*Corresponding authors: Ling Xie, Institute of Cosmic Mathematical Physics, Basic Concept Definition Discipline Room, Dongkou Bamboo City Center Hospital in Hunan Province, China, E-mail: 29997609@qq.com, xieling1968@hotmail.com
Received: 07 February, 2022 | Accepted: 20 May, 2024 | Published: 21 May, 2024
Keywords: 3X+1 conjecture; Logical error

Cite this as

Xie L (2024) Comment: Paper on the progress of pure mathematics "proof of 3x + 1 conjecture". Ann Math Phys 7(2): 148-149. DOI: 10.17352/amp.000117

Copyright Licence

© 2024 Xie L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The unresolved problem in number theory: the 3x+1 problem, deeply loved by math enthusiasts. I saw a paper titled "Proof of 3x+1 Conjecture" in the Journal of Pure Mathematical Progress (ISSN Print: 2160-0368), and its proof was incorrect.

Introduction

The 3x+1 problem [1,2] is one of the unsolved problems in number theory.

A lot of people have been attracted to solving the problem.

Paper in the Journal of Pure Progress in Mathematics on "Proof of the 3X+1 Conjecture" [3], the proof of it [3] is incorrect.

There are two errors, the first is a correctable error and another is a fatal mistake.

Detailed comments

Modifiable errors

Extraction part (i): See the top section on page 15 [3].

Proposition 1:  4 r C 4 (r Z + ), and its row number n=  4 r1   4 r1 1 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGqbGaaeOCaiaab+gacaqGWbGaae4BaiaabohacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGXaGaaiOoaiaabccacaqG0aqcfa4aaWbaaSqabeaajugibiaadkhaaaGaeyicI4Saam4qaKqbaoaaBaaaleaajugibiaabsdaaSqabaqcLbsacaGGOaGaamOCaiabgIGiolaadQfajuaGdaahaaWcbeqaaKqzGeGaey4kaScaaiaacMcacaGGSaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGPbGaaeiDaiaabohacaqGGaGaaeOCaiaab+gacaqG3bGaaeiiaiaab6gacaqG1bGaaeyBaiaabkgacaqGLbGaaeOCaiaabccacaWGUbGaeyypa0JaaeiiaiaabsdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaeiiaKqbaoaalaaakeaajugibiaabsdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaeymaaGcbaqcLbsacaaIZaaaaKqbakabgwSixdaa@7891@

Proof:  4 r 4=4( 4 r1 1)=4[ ( 2 r1 ) 2 1]=4( 2 r1 +1) ( 2 r1 1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGqbGaaeOCaiaab+gacaqGVbGaaeOzaiaacQdacaqGGaGaeSynIeLaaeinaKqbaoaaCaaaleqabaqcLbsacaWGYbaaaiabgkHiTiaaisdacqGH9aqpcaaI0aGaaiikaiaabsdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaGymaiaacMcacqGH9aqpcaaI0aGaai4waiaacIcacaqGYaqcfa4aaWbaaSqabeaajugibiaadkhacqGHsislcaqGXaaaaiaacMcajuaGdaahaaqabeaajugibiaaikdaaaGaeyOeI0IaaGymaiaac2facqGH9aqpcaaI0aGaaiikaiaabkdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaey4kaSIaaGymaiaacMcacaqGGaGaaiikaiaabkdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaGymaiaacMcaaaa@6A54@

Proof:  4 r 4=4( 4 r1 1)=4[ ( 2 r1 ) 2 1]=4( 2 r1 +1) ( 2 r1 1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGqbGaaeOCaiaab+gacaqGVbGaaeOzaiaacQdacaqGGaGaeSynIeLaaeinaKqbaoaaCaaaleqabaqcLbsacaWGYbaaaiabgkHiTiaaisdacqGH9aqpcaaI0aGaaiikaiaabsdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaGymaiaacMcacqGH9aqpcaaI0aGaai4waiaacIcacaqGYaqcfa4aaWbaaSqabeaajugibiaadkhacqGHsislcaqGXaaaaiaacMcajuaGdaahaaqabeaajugibiaaikdaaaGaeyOeI0IaaGymaiaac2facqGH9aqpcaaI0aGaaiikaiaabkdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaey4kaSIaaGymaiaacMcacaqGGaGaaiikaiaabkdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaabgdaaaGaeyOeI0IaaGymaiaacMcaaaa@6A54@

3|( 2 r 1 1 )( 2 r 1 +1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH0icxcaqGZaGaaeiFaKqbaoaabmaakeaajugibiaabkdajuaGdaahaaWcbeqaaKqzGeGaamOCaaaajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaeymaaaacqGHsislcaqGXaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaqGYaqcfa4aaWbaaSqabeaajugibiaadkhaaaqcfa4aaWbaaSqabeaajugibiabgkHiTiaabgdaaaGaey4kaSIaaeymaaGccaGLOaGaayzkaaqcLbsacqGHflY1aaa@50BA@

6|4( 2 r 1 1 )( 2 r 1 +1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH0icxcaqG2aGaaeiFaiaabsdajuaGdaqadaGcbaqcLbsacaqGYaqcfa4aaWbaaSqabeaajugibiaadkhaaaqcfa4aaWbaaSqabeaajugibiabgkHiTiaabgdaaaGaeyOeI0IaaeymaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaaeOmaKqbaoaaCaaaleqabaqcLbsacaWGYbaaaKqbaoaaCaaaleqabaqcLbsacqGHsislcaqGXaaaaiabgUcaRiaabgdaaOGaayjkaiaawMcaaKqzGeGaeyyXICnaaa@5174@

Let 4 r 4=6(n1) (n Z + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGmbGaaeyzaiaabshacaqGGaGaaeinaKqbaoaaCaaaleqabaqcLbsacaWGYbaaaKqbakabgkHiTiaaisdacqGH9aqpcaaI2aGaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaabccacaGGOaGaamOBaKqzGeGaeyicI4SaamOwaKqbaoaaCaaaleqabaqcLbsacqGHRaWkaaqcfaOaaiykaKqzGeGaeyyXICnaaa@5031@

4 r =6(n1)+4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH0icxcaqG0aqcfa4aaWbaaSqabeaajugibiaadkhaaaqcfaOaeyypa0JaaGOnaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacqGHRaWkcaaI0aqcLbsacqGHflY1aaa@4578@

4 r C 4                 (i) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH0icxcaqG0aqcfa4aaWbaaSqabeaajugibiaadkhaaaGaeyicI4Saam4qaKqbaoaaBaaaleaajugibiaabsdaaSqabaqcfaOaeyyXICTaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGPbGaaeykaaaa@4E59@

r  Z + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiablwJirjaadkhacqGHiiIZcaGGGcGaamOwaKqba+aadaahaaWcbeqaaKqzGeWdbiabgUcaRaaaaaa@3EA3@

{3( 2 r-1 +1 )×( 2 r-1 )×( 2 r-1 -1 )} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgsJiCjaabUhacaqGZaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8NaLKqbaoaabmaak8aabaqcLbsapeGaaeOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaabkhacaqGTaGaaeymaaaacaqGRaGaaeymaaGccaGLOaGaayzkaaqcLbsacaqGxdqcfa4aaeWaaOWdaeaajugib8qacaqGYaqcfa4damaaCaaaleqabaqcLbsapeGaaeOCaiaab2cacaqGXaaaaaGccaGLOaGaayzkaaqcLbsacaqGxdqcfa4aaeWaaOWdaeaajugib8qacaqGYaqcfa4damaaCaaaleqabaqcLbsapeGaaeOCaiaab2cacaqGXaaaaiaab2cacaqGXaaakiaawIcacaGLPaaajugibiaab2haaaa@631D@ Inaccurate

r=1{r  Z + } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiablwJirjaabkhacqGH9aqpcaaIXaGaeyicI4Saai4EaiaabkhacqGHiiIZcaqGGcGaaeOwaKqba+aadaahaaWcbeqaaKqzGeWdbiabgUcaRaaacaGG9baaaa@44D8@

( 2 11 +1 )×( 2 11 )×( 2 11 1 )An integral multiple of 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkDiENqbaoaabmaak8aabaqcLbsapeGaaGOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaaigdacqGHsislcaaIXaaaaiabgUcaRiaaigdaaOGaayjkaiaawMcaaKqzGeGaey41aqBcfa4aaeWaaOWdaeaajugib8qacaaIYaqcfa4damaaCaaaleqabaqcLbsapeGaaGymaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaajugibiabgEna0Mqbaoaabmaak8aabaqcLbsapeGaaGOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaaigdacqGHsislcaaIXaaaaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaeyiyIK7daiaabgeacaqGUbGaaeiiaiaabMgacaqGUbGaaeiDaiaabwgacaqGNbGaaeOCaiaabggacaqGSbGaaeiiaiaab2gacaqG1bGaaeiBaiaabshacaqGPbGaaeiCaiaabYgacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabodaaaa@6FDB@

Only:1r  Z + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGpbGaaeOBaiaabYgacaqG5bGaaiOoaabaaaaaaaaapeGaaGymamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=XX=caqGYbGaeyicI4SaaeiOaiaabQfajuaGpaWaaWbaaSqabeaajugib8qacqGHRaWkaaaaaa@4EF3@

{3( 2 r1 +1 )×( 2 r1 )×( 2 r1 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkDiElaacUhacaaIZaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8NaLKqbaoaabmaak8aabaqcLbsapeGaaGOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaabkhacqGHsislcaaIXaaaaiabgUcaRiaaigdaaOGaayjkaiaawMcaaKqzGeGaey41aqBcfa4aaeWaaOWdaeaajugib8qacaaIYaqcfa4damaaCaaaleqabaqcLbsapeGaaeOCaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaajugibiabgEna0Mqbaoaabmaak8aabaqcLbsapeGaaGOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaabkhacqGHsislcaaIXaaaaiabgkHiTiaaigdaaOGaayjkaiaawMcaaaaa@658F@

Correction method: setting 1

Non-modifiable fatal errors

Extraction part (ii): See the lower end of page 11 and the upper end of page 12.

( 1               2            3           4           5         6 7              8             9          10         11        12 ...              ...           ...           ...          ...        ... 6n5    6n4   6n3   6n2   6n1   6n ...         ...        ...            ...          ...      ...    )( 4 10   ...  6n2     ... )       (ii) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaKqzGeabaeqakeaajugibiaaigdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaaIYaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaG4maiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaGinaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaGynaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaaiAdaaOqaaKqzGeGaaG4naiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaGioaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaaI5aGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaaigdacaaIWaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaGymaiaaigdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaaigdacaaIYaaakeaajugibiaac6cacaGGUaGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaac6cacaGGUaGaaiOlaaGcbaqcLbsacaaI2aGaamOBaiabgkHiTiaaiwdacaqGGaGaaeiiaiaabccacaqGGaGaaGOnaiaad6gacqGHsislcaaI0aGaaeiiaiaabccacaqGGaGaaGOnaiaad6gacqGHsislcaaIZaGaaeiiaiaabccacaqGGaGaaGOnaiaad6gacqGHsislcaaIYaGaaeiiaiaabccacaqGGaGaaGOnaiaad6gacqGHsislcaaIXaGaaeiiaiaabccacaqGGaGaaGOnaiaad6gaaOqaaKqzGeGaaiOlaiaac6cacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaabccacaqGGaaaaOGaayjkaiaawMcaaKqzGeGaeyO0H4Dcfa4aaeWaaKqzGeabaeqakeaajugibiaaisdaaOqaaKqzGeGaaGymaiaaicdaaOqaaKqzGeGaaeiiaiaabccacaGGUaGaaiOlaiaac6cacaqGGaaakeaajugibiaaiAdacaWGUbGaeyOeI0IaaGOmaiaabccacaqGGaaakeaajugibiaabccacaqGGaGaaiOlaiaac6cacaGGUaaaaOGaayjkaiaawMcaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeyAaiaabMgacaqGPaaaaa@23C5@

The fourth column in Figure (ii): 6n-2

{4,10,16,22,28,34,40,46,52,58,64,…,(6n1-2),…}∈(6n-2) (1)

The first line, n=1, (6n-2)=4

The second line, n=2, (6n-2)=10

The third line, n=3, (6n-2)=16

……..

The author takes n as the serial number of each line.

The original author added: (6n-2) = 6(n-1)+4, This is correct

Author's formula: 4r = 6(n-1)+4, There will be mistakes.

Extraction part (iii): See the top section on page 15.

∴4r = 6(n-1)+4

∴4r ∈ C4

The following mathematical induction proves that row number of 4r is 4 r1 4 r1 1 3 (r Z + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI0aqcfa4aaWbaaSqabeaajugibiaadkhacqGHsislcaaIXaaaaiabgkHiTKqbaoaalaaakeaajugibiaaisdajuaGdaahaaWcbeqaaKqzGeGaamOCaiabgkHiTiaaigdaaaGaeyOeI0IaaGymaaGcbaqcLbsacaaIZaaaaiaacIcacaWGYbGaeyicI4SaamOwaKqbaoaaCaaaleqabaqcLbsacqGHRaWkaaGaaiykaiabgwSixdaa@4E1A@

Proof: 1) r=1, n= 4 11 4 11 1 3 =1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYbGaeyypa0JaaGymaiaacYcacaqGGaGaamOBaiabg2da9iaaisdajuaGdaahaaqabeaacaaIXaGaeyOeI0IaaGymaaaacqGHsislkmaalaaabaqcLbsacaaI0aqcfa4aaWbaaeqabaGaaGymaiabgkHiTiaaigdaaaGaeyOeI0IaaGymaaGcbaGaaG4maaaacqGH9aqpcaaIXaGaaiilaaaa@4A9D@ As the conclusion is correct.

2) It is assumed that the conclusion is correct as r=s(s∈Z+, s≥1), that is

4 s =6( 4 s1 4 s1 1 3 1)+4        (iii) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI0aqcfa4aaWbaaeqabaqcLbsacaWGZbaaaiabg2da9iaaiAdacaGGOaGaaGinaKqbaoaaCaaabeqaaKqzGeGaam4CaiabgkHiTiaaigdaaaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGinaKqbaoaaCaaabeqaaKqzGeGaam4CaiabgkHiTiaaigdaaaGaeyOeI0IaaGymaaGcbaqcLbsacaaIZaaaaiabgkHiTiaaigdacaGGPaGaey4kaSIaaGinaiabgwSixlaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabMgacaqGPbGaaeyAaiaabMcaaaa@59B6@

Let's look at n=2. The second line gets: 4r =6(n-1)+4=10

⇒4r =10⇒r∉Z+

Conflict with r∈Z+. See: (i).

Let's look at n=3. The second line gets: 4r = 6(n-1)+4 = 16

⇒ 4r = 16 ⇒ 2 = r∈Z+

Let's look at n=4. The second line gets: 4r =6(n-1)+4=22

⇒4r =22⇒r∉Z+

Conflict with r∉Z+.See: (i).

The truth is:

From formula (1):

{4,10,16,22,28,34,40,46,52.58,64,…,(6n1-2),…}∈(6n-2)

{4,10,16,22,28,34,40,46,52.58,64,…,(6n1-2),…}∈(6n-2) ∉4r.

(6n-2)=6(n-1)+4 {4,16,64,…4n,…} ∈4r

Many numbers are missing: {10,22,28,34,40,46,52,58,…}

{10,22,28,34,40,46,52,58,…} ∉4r.

∴4r ≠ 6(n-1)+4=6n-2

∴4r ∉ C4

When the author [1] chooses n as the serial number and (1

6(n-1)+4=4r∈ C4

Get: The author did not prove (3X+1).

Conclusion

If in [3] the author corrects the second error, then [3] the author's method cannot prove (3X+1).

  1. Guy RK. Unsolved Problems in Number Theory: The 3x + 1 Problem. Springer Verlag, New York. 2007; 330-336.
  2. Lagarias JC. The 3x + 1 Problem and Its Generalizations. Am Math Monthly. 1985; 92:3-23. https://doi.org/10.1080/00029890.1985.11971528.
  3. Wang MZ, Yang YB, He ZX, Wang MY. The Proof of the 3X + 1 Conjecture. Adv Pure Math. 2022; 12:10-28. DOI: https://doi.org/10.4236/apm.2022.121002.
 

Help ?