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Abstract

Special relativity theory stems from the Lorentz transformation of signature (1,3). The incorporation into special relativity of the Lorentz transformations of signature 
(m,n) for all m,n�N (n = 3 in physical applications) enriches the theory. The resulting enriched special relativity is a friendly extended special relativity that admits multi-
particle entanglement, as demanded by relativistic quantum mechanics. The Lorentz transformation of signature (m,n) admits a novel physical interpretation induced by 
the intuitively clear interpretation of the Galilei transformation of signature (m,n) for all m,n > 1. In this sense we understand Lorentz utilizing Galilei in m temporal and n 
spatial dimensions, resulting in the emergence of multi-particle entanglement that the enriched special theory of relativity admits. Remarkably, it turns out that, for any 
m,n�N, the group of Lorentz transformations of signature (m,n) is the symmetry group that underlies any multi-particle system that consists of m n - dimensional entangled 
particles.
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Introduction

 Nature organizes itself using the language of symmetries. 
Thus, in particular, the underlying symmetry group by 
which Einstein's special relativity theory can be understood 
is the Lorentz group SOc(1,3) of Lorentz transformations 
of signature (1,3). A physical system obeys the Lorentz 
symmetry if the relevant laws of physics are invariant 
under Lorentz transformations. Lorentz symmetry is one of 
the cornerstones of modern physics. However, it is known 
that entanglement in quantum mechanics involves Lorentz 
symmetry violation [1-6]. Indeed, several explorers exploit 
entangled particles to observe Lorentz symmetry violation; 
see, for instance [7-13].

Quantum entanglement [14] was named by Einstein as 
``spooky action at a distance''. It is a physical phenomenon 

that occurs when groups of particles interact in ways such 
that the quantum state of each particle cannot be described 
independently of the others, even when the particles are 
separated by a large distance. Instead, a quantum state must 
be described as a system of particles as a whole.

Understanding entanglement in relativistic settings has 
been a key question in relativistic quantum mechanics. Some 
results show that entanglement is observer-dependent 
[2]. The aim of this review article is, therefore, to present 
results that demonstrate in extended relativistic settings 
the following: For any m,n∈N, the Lorentz transformation 
group SOc(m,n) of Lorentz transformations of signature 
(m,n) is the missing symmetry group that underlies any 
multi-particle system of m entangled n - dimensional 
particles.
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A Lorentz boost is a Lorentz transformation without 
rotations. The Lorentz boost Bc(V) of signature (m,n), m,n∈N, 
in m temporal and n spatial dimensions is parametrized 
by an n × m velocity matrix V. It is introduced in Section 
2, giving rise to the intuitively clear Galilei boost B∞(V) of 
signature (m,n) in Section 5. The Lorentz boost Bc(V ) and its 
associated Galilei boost B∞(V ) are related by a novel additive 
decomposition Bc(V) into the sum of two components: 
(i) a Galilean component B∞(V) and (ii) an entanglement 
component c−2E(V). The additive decomposition is 
presented in (16) for m = 1 and n∈N, paving the road to the 
presentation of the additive decomposition in (18) for all 
m,n∈N.

The additive decomposition enables the counterintuitive 
Lorentz boost of signature (m,n) to be understood utilizing 
the intuitively clear Galilei boost of signature (m,n). The 
concept of understanding Lorentz utilizing Galilei, thus, 
stems from the additive decomposition in (16) and (18).

The resulting idea of understanding Lorentz utilizing 
Galilei suggests that the group SOc(m,n) of all Lorentz 
transformations of signature (m,n) is the symmetry group 
that underlies any multi-particle system of m n dimensional 
entangled particles, for m,n∈N. This interpretation, 
according to which the Lorentz group of signature (m,n) 
m>1 is the symmetry group of a multi-particle system of 
m n --dimensional particles, is based on mathematical 
structures and analogies with experimentally supported 
results. Hopefully, therefore, this article will stimulate 
a search for experimental support for our physical 
interpretation of the Lorentz group SOc(m,3) of signatures 
(m,3), m>1. Finally, a search for experimental support that 
involves the shifting of energy levels that, according to [10], 
results from quantum entanglement is suggested.

Lorentz boost  of signature (m,n): Parametric 
realization

 Let ℝm,n be a pseudo-Euclidean space of signature (m,n) 
of m temporal dimensions and n spatial dimensions, m,n∈N. 
A linear transformation Λ ℝm,n is a Lorentz transformation 
of signature(m,n), or (m,n)-Lorentz transformation, if it 
leaves the squared pseudo norm 

12 2
2=1 =1

m n
t xi ii ic
                 (1)

invariant and can be reached continuously from the 
identity transformation ℝm,n. Here c is an arbitrarily ϐixed 
positive constant that represents the vacuum speed of light. 
The group of all (m,n)-Lorentz transformations is denoted 
by SOc(m,n). A Lorentz boost of signature (m,n), or (m,n)-
Lorentz boost, is an (m,n)-Lorentz transformation without 
rotations. With c = 1, the (m,n)-Lorentz transformations are 
known as proper pseudo-orthogonal transformations [15, 
p.~478].

A novel, uniϐied parametric realization of the set of all 
(m,n)-Lorentz boosts for any m,n∈N is discovered in [16], 
obtaining the elegant (m + n) × (m + n) parametric matrix 
representation in (7) as follows:

Let ℝn×m be the set of all real n×m matrices and let 
n m n m
c
    be the c-ball of ℝn×m given by 

={  : < }n m n mV V cc
                  (2)

Where ||V|| is the matrix spectral norm of V [17, 
p.~295], [16, Deϐinition 5.7]. It should be noted here that 
in the special case when m = 1 the matrix V ∈ℝn×1 can be 
viewed as a vector and, as such, the matrix spectral norm of 
the matrix V ∈ℝn×1 and its Euclidean norm coincide.

Let V ∈ℝn×m. Each of the two real symmetric matrices 

 12:=, ,
 12:=, ,

L t n nI c VVnnV c

R t m mI c V VmmV c


   


   




              (3)

exists if and only if n mV c
  [16, Section 5.3]. Here, In is the 

n×n identity matrix, and exponent t denotes transposition.

It is convenient to use the short notation = , ,
L L
V nV c   

and = , ,
R R
V mV c  , noting that c is an arbitrarily ϐixed positive 

constant and that the signature parameters (m,n) are 
recovered from the dimensions of the matrix parameter V 
∈ℝn×m.

In the special case when m = 1, 1nV c
  is a column 

vector, V tV = V2 < c2, and 
 12 2 1 1= 1 = = ( =1)R c V mV V


                (4)

is the Lorentz gamma factor of special relativity. Accordingly, 
R
V  is called the right gamma factor of signature (m,n) and 
L
V  is called the left gamma factor of the signature (m,n). 

Hence, the Lorentz gamma factor γV is the right gamma 
factor of signature (1,n).

Remark (Matrix Division Notation). Let M1 and M2 be 

two matrices such that the inverse, 1
2M
 , of M2 exists. If the 

two matrices satisfy the commuting relation 

1 1= ,1 2 2 1M M M M 

then we may adopt the matrix division notation 

1 11 := = .1 2 2 1
2

M
M M M M

M
 
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It is important to note that the left and right gamma 
factors of any signature (m,n), m,n∈N, obey the identities 
[16, Lemma 5.82] 

2( )1= 2

2( )1= 2

L
L tVI VVnV LIc n V

R
R tVI V VmV RIc m V


 




 



                (5)

for all n mV c
 . Identities (5) will prove useful in 

constructing the additive decomposition (18).

In the special case when m = 1 the second identity in (5) 
descends to the identity that γV obeys, 

2
1 2=1 ( =1)2 1

V V mV c V








                (6)

for all nV c . Identity (6) will prove useful in constructing 
the additive decomposition (16).

Finally, as shown in [16, Eq.~5.128], for any m,n∈N, the 
set of all (m,n)-Lorentz boosts has the elegant (m+n)×(m+n) 
block matrix representation 

1
2( ) = SO ( , ),

R R tVV VcB V m nc c
L LVV V

 
 
 
 
 
 

 


 
                (7)

parametrized by the matrix n mV c
 . The physical 

interpretation of the matrix parameter n mV c
  will be 

revealed in Section 5 utilizing the intuitively clear (m,n)-
Galilei boost that we introduce in that section.

Beautifully, the submatrices of Bc(V ) in (7) illustrate the 
symmetry between m-dimensional time and n-dimensional 
space in terms of the right and left gamma factors. On 
this occasion, it is interesting to note that the right and 
left gamma factors enjoy the commuting relations [16, 
Eq.~(5.119)] 

=

=

=

= .

L RV VV V
R t t LV VV V
L t t LVV VVV V
R t t RV V V VV V

 

 

 

 

                   (8)

For any signature (m,n), the matrix Bc(V ), where 
n mV c
 , is a linear transformation that takes a time-space 

event 

,:= ( ,  , , ,  , )1 1
m ntt t x xm n

 
  
 


t
x

                (9)

to a time-space event 

,:= ( ,  , , ,  , )1 1
'

m n' ' ' ' tt t x xm n'

 
 
  
 


t

x
                 (10)

leaving the squared pseudo norm invariant, 

1 12 2 2 2= ( ) ( ) ,2 2
' '

c c
 t x t x              (11)

where , ' mt t   and , ' nx x  .

An elegant, straightforward proof of the result in (11), 
based on the commuting relations in (8), is found in [16, 
Sect.~5.8]. The uniϐied parametrization of the Lorentz 
(m,n)-boost in (7) for any m,n∈N, thus, shakes down the 
underlying matrix algebra into elegant and transparent 
results.

The special case when m = 1

The special case when m = 1 is obvio us. In this section, 
we present this special case to pave the road to the general 
case when m∈N there is any natural number.

In the special case when m = 1 the (m,n)-Lorentz boost 
(7) descends to the standard (1,n) -Lorentz boost of special 
relativity (where n = 3 in physical applications), which is 

1
2

( ) = SO (1, )2
1
2 1

tVV Vc
B V nc c

tVV I VVnV c V

 






 
 
 
 
 
 
 
 






             (12)

where 1 1 =n n nV c
      is a column vector in the ball 

1 =n n
c c
   of the Euclidean n-space ℝn, ={ : < }n nV V cc    

, and where γv is the Lorentz gamma factor given by (4). The 
proof that (7) descends to (12) in the special case when m = 
1 is presented in [16, Eq.~5.173].

In the Galilean limit, c→∞, the (1,n) -Lorentz boost Bc(V) 
in (12) tends to the (1,n) -Galilei boost B∞(V), 

1 01( ) = ( ) =lim nB V B Vcc V In

 
 
 
 




           (13)

where 0m×n is the m×n zero matrix.

Contrasting the (1,n)-Lorentz boost Bc(V), the (1,n) 
-Galilei boost G∞(V) is intuitively clear. Thus, for instance, 
for n = 3 and 
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3 1= = ( , , )1 2 3
tV v v v v              (14)

we have the following boost application: 

1 0 0 0
1 0 01 1 1 11

( ) = = .0 1 02 2 2 22
0 0 13 3 3 33

t t t
x x x v tv

B V x x x v tv

x x x v tv

      
      
      
      
      
      
      

      


 



             (15)

Equation (15) indicates the physical interpretation of 
the (1,3)-Galilei boost B∞(V), according to which it boosts 
by velocity V = v = (v1,v2,v3)t a single particle in a position x 
= (x1,x2,x3)t at the time t to the boosted position x + vt.

Owing to Identity (6), the (1,n)-Lorentz boost Bc(V) in 
(12) possesses the remarkable additive decomposition as 
the sum of a Galilean component B∞(V) and an entanglement 
component c−2E(V) given by 

2
11 0 11( ) = 2

2
1 1

1= ( ) ( ) SO (1, )2

tV V V
VnB Vc VV I cn tV VV V VV
V V

B V E V nc
c





 
 

 
 
  
  
  

   
  
 


 

 

 

 
                 (16)

1nV Rc
 . Here the entanglement component (which 

entangles the space and the time of a single boosted 
particle) is c−2E(V ), where 

2
1

( ) := .
2

1 1

tV V V
VE V V

tV VV V VV
V V





 
 

 
 
 
 
 
 
  
 



 

             (17)

The additive decomposition (16) of the (1,n)-Lorentz 
boost Bc(V) demonstrates that the effects of a (1,n)-Lorentz 
boost Bc(V) are the sum of Galilean effects, due to the 
Galilean component B∞(V), and of relativistic effects, due 
to the entanglement component c−2E(V ). Furthermore, it 
demonstrates that the relativistic effects of a (1,n) -Lorentz 
boost are directly noticeable only at high speeds owing to 
the presence of the coefϐicient c−2 of E(V) in (16).

The Galilean component of the additive decomposition 
(16) Bc(V) is intuitively clear. Contrastingly, the 
entanglement part of the additive decomposition (16) Bc(V) 
is counterintuitive, giving rise to relativistic effects like 
(i) entanglement of time and space of a boosted particle; 
(ii) time dilation; (iii) length contraction; (iv) Thomas 
precession; and (v) particle's energy levels.

Being intuitively clear, the Galilean component B∞(V) 
of the additive decomposition (16) Bc(V)imparts the 

interpretation of V. It reveals the physical interpretation of 

the parameter 1nV c
  that parametrizes the boost Bc(V 

)∈SOc(1,n) as the velocity of a boosted particle relative to 
an inertial observer. In this sense, we say that the additive 
decomposition (16) enables understanding Lorentz utilizing 
Galilei in signature (m,n) for m = 1 and all n∈N.

We now face the task of understanding Lorentz utilizing 
Galilei in signature (m,n) for all m,n�N. To accomplish 
the task, we introduce the intuitively clear (m,n)-Galilei 
boost for all m,n�N. in Section 5. Completing this task will 
enable us to achieve the main goal of this paper, which is 
to demonstrate that the group SOc(m,n) of all (m,n)-Lorentz 
transformations is the symmetry group of multi-particle 
systems that consist of m n-dimensional entangled particles 
for all m,n∈N (n = 3 in physical applications).

The (m,n)-lorentz boost additive decompo-
sition

The (1,n)+-Lorentz boost additive decompo sition is 
obtained in (16). Analogously, we now obtain the (m,n)-
Lorentz boost additive decomposition for all m,n∈N.

Owing to Identities (5), the (m,n)-Lorentz boost in (7) 
possesses the remarkable additive decomposition as the 
sum of a Galilean component B∞(V) and an entanglement 
component c−2E(V) given by 

1
2( ) =

2( )

0 1= 2 2 2( ) ( )

1=: ( ) ( ) SO ( , )2

R R tVV VcB Vc
L LVV V

R
t R tV V V VVRII m Vm m n

V I L Lcn t tV VVV V VVL LI In nV V

B V E V m nc
c

 
 
 
 
 
 

 
 
 
  

       
 
  
 

 

 




 
 

 

 

 
       
       
                 (18)

for any n mV c
 .

The importance of the additive decomposition (18) 
rests on the fact that it enables the intuitively clear 
Galilean component B∞(V) to impart interpretation to the 
counterintuitive (m,n) -Lorentz boost Bc(V).

The additive decomposition (18) of signature (m,n) 
for all m,n∈N extends the additive decomposition (16) of 
signature (m,n) for m = 1 all n∈N. It expresses the (m,n)-
Lorentz boost Bc(V) as the sum of the (m,n)-Galilei boost 
B∞(V) and an entanglement component c−2E(V), where 

0
( ) = ,

Im m nB V
V In

 
  
 


              (19)
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n mV  , is the (m,n) -Galilei boost of signature (m,n) 
parametrized by V. We will ϐind in Section 5 that the (m,n) 
-Galilei boost is intuitively clear and that its matrix parameter 
V is a velocity matrix for all m,n∈N. The m columns of V will 
turn out to be, respectively, the m velocities of m particles 
collectively boosted relative to an m inertial observer.

The effects of the entanglement component c−2E(V) 
are directly noticeable only at high speeds owing to 
the presence of the coefϐicient c−2 of E(V) in (18). These 
effects entangle the m time and n space coordinates of m 
entangled n-dimensional particles. As such, the effects of 
the entanglement component c−2E(V) are counterintuitive 
relativistic effects that have to be confronted.

We now face the task of demonstrating that the Galilean 
component of the additive decomposition (18) is intuitively 
clear. This, in turn, will enable us to determine the physical 

interpretation of the matrix parameter n mV c
  of the 

(m,n)-Lorentz boost, as well as the physical interpretation 
of the (m,n)-Lorentz boost itself. 

Galilei boost of signature (m,n)

In the Galilean limit, c ∞, the (m,n) -Lorentz boost Bc(V) 
in (7) tends  to its associated (m,n)-Galilei boost B∞(V), 

0
( ) = =: ( ) SO ( , ),lim

Im m nB V B V m ncc V In

 
  
 

              (20)

V∈ℝn×m, noting that =lim R Ic mV  and =lim L Ic nV  

Here SO∞ (m,n)is the group of all -Galilei boosts for any 
m,n∈N.

To intuitively understand the (m,n)-Galilei boost B∞(V) in 
(20), we consider its application to time-space coordinates 
in m-time and n-space dimensions.

The application of the (1,3) -Galilei boost to the time-
space coordinates of a single particle in a position x = 
(x1,x2,x3)t at a time t is described in (15).

We now consider the Galilei boost of signature (m,n) for 
all m,n∈N, paying special attention to the case when (m,n) = 
(2,3) as an illustrative example.

Let B∞(V ) = B∞(v1,v2) be the Galilei boost of signature 
(2,3), parametrized by the velocity matrix V = (v1 v2), 

11 12
3 2= (  ) = ,1 2 21 22

31 32

v v

V v v

v v

 
 
 
 
 
 
 

v v               (21) 

of two velocity vectors vk = (v1k, v2k, v3k)
t∈ℝ3, k = 1,2. These 

two velocity vectors form the two columns of the velocity 

matrix V, in analogy with (14), where the velocity matrix V 
has a single column v.

Furthermore, let 

01
0 02 1

5 2:= = 011 12 2
21 22 1 2
31 32

t

t t
T x x t
X

x x

x x

 
 
   
   

           
         

 
 
 



x x


               (22)

be a 5 × 2 matrix that represents a (2,3) -particle system. It 
is a multi-particle system consisting of two 3-dimensional 
particles, (tk,xk), k = 1,2, with positions xk = (x1k,x2k,x3k)

t∈ℝ3, 
at time tk∈ℝ, respectively. In general. An (m,n) -particle 
system is a multi-particle system consisting of m n - 
dimensional particles.

Here 

01:=
0 2

t
T

t

 
 
 
 

               (23)

t1,t2 > 0, is a 2×2 diagonal matrix that represents the times t1 
and t2 when two particles are observed at positions x1 and 
x2 in ℝ3, respectively; and 

11 12
3 2:= = (  )21 22 1 2

31 32

x x

X x x

x x

 
 
 
 
 
 
 

x x                 (24)

is a 3×2 matrix the columns of which represent the positions 
x1,x2∈ℝ3 of two particles at times t1,t2∈ℝ, respectively.

Accordingly, the point 5 2T
X

 
  
 

  represents a 

(2,3)-particle system consisting of two particles (t1,x1) 

and (t1,x2) with positions x1 and x2 in ℝ3 at times t1 and t2, 
respectively.

The collective application of the Galilei boost B∞(V ) of 

signature (2,3) to the pair of particles T
X

 
 
 

 in m+n = 2+3 

time-space dimensions yields 

:= ( ) ,
'T T

B V
X'X

            
             (25)

which is described in the following chain of equations, 
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               (26)

Here, B∞(V ) in (25) – (26) is given by (19) with m = 2 
and n = 3.

The chain of equations (26) describes the application 
of a Galilei boost B∞(V ) of signature (2,3) to collectively 
boost two particles, (t1,x1) and (t2,x2), into the two boosted 
particles, (t1,x1 +v1t1) and (t2,x2 +v2t2), by two 3-dimensional 
velocity vectors v1 = (v11,v21,v31)t and v2 = (v12,v22,v32)t in ℝ3. 
It is important to note that the two collectively boosted 
particles are not entangled in the sense that the boost of 
each boosted particle is independent of the boost of the 
other boosted particle. Interestingly, this observation fails 
when we replace Galilei boosts of signature (m,3), m ≥ 2, 
with corresponding Lorentz boosts of the same signature 
(m,3), as we will see in Section 6.

Each of the two particles (t1,x1) and (t1,x1) possesses 
a one-dimensional time, t1∈ℝ and t2∈ℝ, respectively. 
Accordingly, the system consisting of the two particles 
possesses the two-dimensional time, (t1,t2)∈ℝ2. Each 
of the two particles possesses its clock so that the two-
dimensional time of the system is measured by two clocks. 
In general, a multi-particle system consisting of m particles 
possesses an m -dimensional time, measured by m clocks, 
m∈N.

The extension of (21) – (26) from signature (2,3) to 
signature (m,n), for all m,n∈N, is now obvious. The Galilei 
boost B∞(V) of signature (m,n) is parametrized by a velocity 

matrix V∈ℝn×m of order n×m that consists of m columns, V 
= (v1 v2 ... vm) that respectively represent the m velocities 

v1,v2, ..., vm∈ℝn of m collectively boosted particles relative to 
an inertial observer. Furthermore, when B∞(V) applied to 
collectively boost m particles in ℝn (i) it keeps invariant each 
of the times tk, k = 1,...,m of the m particles (tk,xk), that is, tk

′ 

= tk, and (ii) it boosts their positions xk∈ℝn into the boosted 
positions xk

′ = xk + vktk∈ℝn at times tk, respectively. The m 

collectively boosted particles are not entangled in the sense 
that (i) the boost of each boosted particle is independent 
of the boosts and times of the other boosted particles and 
(ii) the time of each boosted particle is independent of the 
times and boosts of the other boosted particles.

A Galilei boost of signature (m,3), applied collectively 
to the m > 1 particles of an (m,3)-particle system is thus 
equivalent to m Galilei boosts of signature (1,3), applied 
individually to each particle of the system. Hence, a Galilei 
boost of signature (m,n), m,n ≥ 2, can be viewed as a Galilei 
multi-boost acting on multi-particle systems. While Galilei 
multi-boosts involve no entanglement, we will see that 
corresponding Lorentz multi-boosts accommodate the 
entanglement of the space and time coordinates of multi-
particle systems.

The chain of equations (26) for the action of Galilei boosts 
of signature (2,3) and its obvious extension to the action of 
Galilei boosts of any signature (m,n), m,n ≥ N, demonstrates 
that the extension of the common Galilei boost of signature 
(1,3) to Galilei boosts of any signature (m,n) is quite 
natural and intuitively clear. The additive decomposition 
(18) provides a correspondence between Galilei boosts, 
B∞(V), V∈ℝn×m, of signature (m,n) and Lorentz boosts, Bc(V), 

n m
cV  , of the same signature (m,n). This correspondence 

indicates that the extension of the common Lorentz boost 
of signature (1,3) to Lorentz boosts of any signature (m,n) 
is quite natural as well, representing Lorentz multi-boosts 
when m > 1. Yet, unlike Lorentz boosts, Galilei boosts of 
signature (m,n) are intuitively clear.

Understanding Lorentz multi-boosts utili-
zing Galilei multi-boosts: The emergence of 
relativistic multi-particle entanglement

Following its introduction in Section 5, the  (m,n)-Galilei 
multi-boost B∞(V) is intuitively clear for any (m,n)∈N. As 
such, utilizing the additive decomposition (18) imparts 
interpretation to the counterintuitive (m,n)-Lorentz boost. 
Speciϐically, B∞(V) revealed in (18) that the parameter 

n m
cV   of the (m,n)-Lorentz boost BC(V) in (7) is a velocity 

matrix the m columns of which are respectively the m 
velocities of collectively m boosted particles relative to an 
inertial observer.

Accordingly, the interpretation that the (m,n)-Galilei 
boost imparts to the (m,n)-Lorentz boost utilizing the 
additive decomposition (18) is as follows: The (m,n)-
Lorentz boost m>1 is a multi-boost that collectively boosts 
a multi-particle system of m n-dimensional particles by 
respective m velocities, which are the m columns of the 
velocity matrix n m

cV  . In this sense, we say that the 
additive decomposition (18) enables understanding Lorentz 
utilizing Galilei.



156

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Ungar AA (2024) Understanding Lorentz Utilizing Galilei: The Emergence of a Friendly Extended Special Relativity Theory that Admits Relativistic Multi-
Particle Entanglement. Ann Math Phys 7(2): 150-157. DOI: https://dx.doi.org/10.17352/amp.000118

Contrasting the intuitively clear Galilean component 
B∞(V) of the additive decomposition (18), the entanglement 
component of the additive decomposition gives rise to 
counterintuitive relativistic effects for any m>1 and n∈N. 
These relativistic effects include (i) relativistic entanglement 
of the m-temporal and n-spatial coordinates of m collectively 
boosted particles; (ii) multi-time dilation; (iii) multi-length 
contraction; (iv) multi-time and space precession; and (v) 
multi-particle's energy levels.

In classical mechanics, the group SO∞(m,3) of all (m,3) 
-Galilei transformations (including Galilei boosts and 
rotations) is the symmetry group of any multi-particle 
system consisting of m particles. If we understand Lorentz 
by Galilei utilizing the additive decomposition (18), then 
Galilei imparts to Lorentz the following interpretation: 
In special relativistic mechanics the group SOc(m,3) of all 
(m,3) -Lorentz transformations is the symmetry group of 
any multi-particle system consisting of m particles.

It is now clear why quantum entanglement involves 
Lorentz symmetry violation in special relativity theory, 
and how to confront the resulting problem. The symmetry 
group of m entangled particles, m>1, is not the standard 
Lorentz group SOc(m,3) of special relativity. Rather, the 
symmetry group of m entangled particles, m>1, is SOc(m,3).

A suggested search of experimental support 
for enriched special relativity theory

Stems from the Lorentz group SOc(m,3), special 
relativity theory does not admit particle entan glement. To 
enable special relativity to admit the entanglement of m>1 
particles it is necessary to enrich it by incorporating the 
Lorentz groups SOc(m,3) for all m>1.

The resulting enriched special relativity theory thus stems 
from the Lorentz groups SOc(m,3) for all m∈N. It is hoped 
that this article will stimulate a search for experimental 
support for the necessity to enrich special relativity theory 
by incorporating the Lorentz groups SOc(m,3) for all m>1.

A suggested search for experimental support of our 
enriched special relativity theory follows: The shifting of 
energy levels that results from quantum entanglement, 
leading to Lorentz symmetry violation, is studied in [10]. 
While the shifting of energy levels violates (1,3)-Lorentz 
invariance, it perhaps obeys (m0,3)-Lorentz invariance 
for some m0>1. If m0 exists, then the (m0,3)-Lorentz 
invariance of the shifting of energy levels would provide 
experimental support for our enriched special relativity 
theory. Accordingly, a search for m0 amounts to a search for 
a desired experimental support.

Conclusion

The (m,n)-Lorentz boost Bc(V) in (7) is a Lorentz 
transformation of signature (m,n), m,n∈N, without rotations. 

It is a coordinate transformation of m temporal coordin ates 
and n spatial coordinates of (m+n)-dimensional spacetime, 
which leaves invariant the squared pseudonorm (1). In the 
special case when m = 1 Bc(V) descends to the common 
(1,n)-Lorentz boost of special relativity theory (SRT), where 
n = 3 in physical applications.

In the Newtonian limit, c→∞, the counterintuitive 
(m,n)-Lorentz boost Bc(V) tends to the intuitively clear 
(m,n)-Galilei boost B∞(V) in (20). The (m,n)-Galilei boost 
turns out to be a multi-boost, that is, a boost that boosts 
simultaneously m n-dimensional particles simultaneously.

The (m,n)-Lorentz boosts and the (m,n) -Galilei boosts 
are related by the additive decomposition (16) for m = 1 and 
(18) for m≥1. Employing the additive decomposition, the 
intuitively clear (m,n)-Galilei boost imparts interpretation 
to the (m,n)-Lorentz boost, revealing that the latter, like 
the former, is a multi-boost, simultaneously boosting m 
n-dimensional particles.

Finally, it is clear from the additive decomposition (18) 
that Galilei multi-boosts admit no entanglement while, in 
contrast, Lorentz multi-boosts admit entanglement. Hence, 
to enable SRT to admit entanglement of m 3-dimensional 
particles it seems to be useful to enrich SRT by incorporating 
into SRT the (m,3)-Lorentz groups for all m>1. A search 
for experimental support for enriched SRT in terms of 
the shifting of energy levels that result from quantum 
entanglement is proposed in Section 8. 
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