Refinement of Jensen Mercer and Hermite–Hadamard-Mercer type inequalities for generalized convex functions on co-ordinates with their computational analysis
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Refinement of Jensen Mercer and Hermite–Hadamard-Mercer type inequalities for generalized convex functions on co-ordinates with their computational analysis

Muhammad Toseef1, Zhiyue Zhang1*, Abdul Mateen1, Hüseyin Budak2 and Artion Kashuri3

1Ministry of Education Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China
2Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
3Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana 1001, Albania
*Corresponding authors: Zhiyue Zhang, Ministry of Education Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China, E-mail: zhangzhiyue@njnu.edu.cn
Received: 19 June, 2024 | Accepted: 27 June, 2024 | Published: 28 June, 2024
Keywords: Jensen Mercer; Hermite–Hadamard Inequality; Convexity; Co-ordinated convex functions

Cite this as

Toseef M, Zhang Z, Mateen A, Budak H, Kashuri A (2024) Refinement of Jensen Mercer and Hermite–Hadamard-Mercer type inequalities for generalized convex functions on co-ordinates with their computational analysis. Ann Math Phys 7(2): 190-205. DOI: 10.17352/amp.000123

Copyright Licence

© 2024 Toseef M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In the current study, the Jensen-Mercer inequality is extended to co-ordinated h-convex functions. Additionally, a novel inequality is employed to derive Hermite–Hadamard-Mercer type inequalities for h-convex functions defined on the co-ordinates of a rectangle in the plane. These developments not only reinforce the core tenets of convex analysis but also expand the applicability of Hermite-Hadamard-Mercer type inequalities to generalized convex functions on co-ordinates. This provides valuable tools for data analysis and optimization problem-solving. The practical utility and efficacy of this generalized inequality in real-world scenarios involving co-ordinates are demonstrated through a computational study.

Mathematics Subject Classification: 26D10, 26D15, 26A51, 34A08.

1. Introduction

Convexity is a fundamental concept in mathematics, particularly in the field of optimization and analysis. The history of convexity dates back to ancient times, with early mathematical investigations conducted by ancient Greek mathematicians such as Euclid and Archimedes. However, the formal development of convexity theory began to take shape in the 17th and 18th centuries with the works of mathematicians like Isaac Newton and Leonhard Euler.

In the 19th century, the concept of convexity saw significant advancements, particularly with the emergence of convex analysis. Augustin-Louis Cauchy, Jean-Victor Poncelet, and Joseph Fourier made notable contributions to the field during this period. The mid-20th century witnessed further progress in convex optimization and convex geometry, with mathematicians like Hermann Minkowski, George Dantzig, and John von Neumann playing pivotal roles in advancing the theory and applications of convexity.

Today, convexity theory is a cornerstone of mathematics, with widespread applications in various fields, including economics, engineering, computer science, and physics. Its importance stems from its elegance, versatility, and utility in modeling and solving a wide range of optimization problems.

The Hermite-Hadamard inequality, also known as the Hermite-Hadamard integral inequality, is a fundamental result in mathematical analysis that provides bounds on the value of certain types of integrals. It is named after French mathematician Charles Hermite and French mathematician Jules Henri Poincare (though it is often associated with the work of French mathematician Jacques Hadamard as well). Charles Hermite (1822-1901) was a prominent French mathematician known for his work in number theory, algebra, and mathematical analysis. He made significant contributions to the theory of elliptic functions, algebraic number theory, and mathematical physics. Jules Henri Poincare (1854-1912) was a leading mathematician and physicist who made substantial contributions to various fields of mathematics, including topology, celestial mechanics, and the theory of dynamical systems, to know more one can be seen [1,2]. Mathematically it is defined as:

If Ϝ:I MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaamysaiabgkOimprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHiLaeyOKH4Qae4xhHifaaa@54B4@ be a convex function on the interval I on the real numbers σ 1 , ϖ 1 I. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIXaaabeaakiabgIGiolaadMeacaaIUaaaaa@40C8@ The inequality

Ϝ( ϖ 1 + σ 2 2 ) 1 ϖ 1 σ 1 σ 1 ϖ 1 Ϝ( ϰ )dϰ Ϝ( σ 1 )+Ϝ( ϖ 1 ) 2 ,      (1.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaamaalaaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacqGHKjYOdaWcaaqaaiaaigdaaeaacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaaqaaiabeA9a2naaBaaabaGaaGymaaqabaaaniabgUIiYdGccqWFCpa9daqadaqaaGqbciab+b=a5dGaayjkaiaawMcaaiaadsgacqGFWpq+cqGHKjYOdaWcaaqaaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaHwpGDdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqGXaGaaeykaaaa@7EE9@

is known as Hermite-Hadamard inequality for convex function.

Breckner was the pioneer mathematician to introduce an s-convex function in 1979 [3], and the exploration of connections with s-convexity in its initial sense was extensively discussed in [4]. The direct proof of Breckner's seminal result was later acclaimed in 2001 by Pycia [5]. Given the pivotal role of convexity and s -convexity in unraveling optimality within mathematical programming, numerous researchers have dedicated substantial attention to s-convex functions. Notably, earlier works by H. Hudzik, et al. [4] elucidated two variants of s-convexity s(0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3D96@ , demonstrating that the second sense inherently surpasses the s-convexity in the initial sense whenever s(0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3D96@ . We broadly term the use of s-convexity in its second sense as an s-convex function. Given s(0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3D96@ , this class of functions holds greater importance than convex functions. Moreover, our primary findings reveal that results obtained via s-convexity significantly outperform those derived from convexity. Additionally, s-convexity serves as a generalization of convex functions, allowing us to deduce results for convex functions by setting s=1 in the s-convex function outcomes. The Hadamard inequality for s-convex functions in its initial sense was introduced by S. S. Dragomir and Fitzpatrick [6]. Hadamard inequality for s-convex functions in the second sense was also introduced by S. S. Dragomir and Fitzpatrick in [6]. The class of h-convex functions was introduced by S. Varošanec in [7], which generalizes the concept of Convex Functions, s-Convex Functions, Godunova-Levin Functions, and p-Functions. Hadamard's type inequality for h-convex functions was introduced by Sarilaya, et al. in [8].

The primary objective and rationale behind coordinated convex functions lie in the fact that every convex mapping Ϝ:[ σ 1 , ϖ 1 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaaG4waiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccaaIDbGaeyOKH46efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuaaa@58D6@ retains convexity when viewed along its coordinates. In other words, the function remains convex when examined individually along each coordinate axis. However, it's noteworthy that while coordinated convex functions exhibit this property, there also exist coordinated convex functions that are not globally convex. This highlights the nuanced relationship between coordinated convexity and global convexity, offering insights into the intricate nature of these mathematical structures (see for example [9,10]). For more results in the field of co-ordinated convex, we refer the interested readers to see [9-20].

S.S. Dragomir established the ensuing Hermite-Hadamard type inequalities for coordinated convex functions defined on the plane's rectangle  in [9].

Theorem 1
[9] Suppose that a function Ϝ:Δ=[ σ 1 , ϖ 1 ]×[ σ 2 , ϖ 2 ] 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaaGypamaadmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIXaaabeaaaOGaay5waiaaw2faaiabgEna0oaadmaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiabgkOimprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi1aaWbaaSqabeaacaaIYaaaaOGaeyOKH4Qae4xhHiLaaGjbVdaa@6AF9@ is convex on co-ordinates. Then one has the inequalities:

Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeGae8h3dqVcdaqadaqaaKqzGeGaeq4WdmNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeo8aZPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeq4WdmNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeA9a2PWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeqO1dyNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeo8aZPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeqO1dyNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeA9a2PWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaaqaaKqzGeGaaGinaaaaaaa@79BD@

1 ( ϖ 1 σ 1 )( ϖ 2 σ 2 ) σ 1 ϖ 1 σ 2 ϖ 2 Ϝ( ϰ,γ )dγdϰ     (1.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHLjYSkmaalaaabaqcLbsacaaIXaaakeaadaqadaqaaKqzGeGaeqO1dyNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaeyOeI0Iaeq4WdmNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaWaaeWaaeaajugibiabeA9a2PWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgkHiTiabeo8aZPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaKqzGeGaeq4WdmNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaqaaKqzGeGaeqO1dyNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaqcLbsacqGHRiI8aOWaa8qmaeqaleaajugibiabeo8aZPWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaeaajugibiabeA9a2PWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaKqzGeGaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0RWaaeWaaeaaiuGajugibiab+b=a5laaiYcacqaHZoWzaOGaayjkaiaawMcaaKqzGeGaamizaiabeo7aNjaadsgacqGFWpq+caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabkdacaqGPaaaaa@856F@

Ϝ( σ 1 + ϖ 1 2 , σ 2 + ϖ 2 2 ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHLjYStuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0RWaaeWaaeaadaWcaaqaaKqzGeGaeq4WdmNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaeqO1dyNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGcbaqcLbsacaaIYaaaaiaaiYcakmaalaaabaqcLbsacqaHdpWCkmaaBaaaleaajugibiaaikdaaSqabaqcLbsacqGHRaWkcqaHwpGDkmaaBaaaleaajugibiaaikdaaSqabaaakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiaai6caaaa@5E0F@

The Hadamard-type inequality for s-convex functions in the second sense, defined on the coordinates of a rectangle in the plane 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@432B@ , was established by Alomari and M. Darus in [21].

Alomari and M. Darus established similar inequalities of Hadamard's type for s-convex functions defined on the coordinates in the first sense on a rectangle in the plane 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@432B@ [11]  Hadamard inequality for h-convex functions defined on the coordinates of a rectangle in the plane 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaaikdaaaaaaa@432B@  was introduced by Amer Latif and M. W. Alomari in [22].

The Hermite-Hadamard Inequality spans a wide range of operator convex functions, giving rise to numerous intriguing inequalities within the dynamic field of matrix analysis. A natural progression from the classical Hermite-Hadamard Inequality to Hermitian matrices could entail a double inequality. This extension aims to capture the interplay between the inherent properties of Hermitian matrices and the principles underlying the Hermite-Hadamard Inequality, potentially yielding new insights and applications in matrix analysis.

The Hermite–Hadamard-Mercer type inequality is an extension of the classical Hermite–Hadamard inequality. It provides a relationship between the average value of a function over an interval and the function's integral. Specifically, it states that if a function is convex (or satisfies certain convexity conditions) on a given interval, then the average value of the function over that interval is greater than or equal to the value of the function at the midpoint of the interval. This inequality has various applications in mathematical analysis, optimization, and related fields. The literature regarding Hermite–Hadamard-Mercer inequality is as follows:

In 2003, Mercer authored a paper discussing a modification of Jensen's Inequality [23]. In 2006, Pe arić and their colleagues introduced a concept of Mercer-type Jensen inequality for operator convex functions, accompanied by various applications [24]. Niezgoda in 2009, worked on the generalization of Mercer's result on the convex functions [25]. Hermite–Hadamard-Mercer-type inequality was introduced by Kian, et al. in 2013 [26]. Hermite–Hadamard-Mercer Inequality for -convex functions are given by Xu, et al. in [27].

In mathematics, there's a crucial link between the value of a convex function evaluated at an integral and the integral of a convex function itself. This connection is formally termed Jensen's inequality, named after the Danish mathematician Johan Jensen, who formulated it in 1906. Jensen's inequality for convex functions holds a prominent place among the most celebrated inequalities in both mathematical and statistical realms. It serves as a foundational principle from which numerous other notable inequalities stem. Notably, Hölder's inequality and Minkowski's inequality emerge as special instances of Jensen's inequality for convex functions, highlighting its extensive applicability. Over time, a multitude of variations, refinements, and generalizations of Jensen's inequalities have been developed and extensively investigated, underscoring its enduring importance and versatility across diverse mathematical contexts. For more detail, one can be seen [28-32].

The outline of the article is structured as follows: In Section 2, we provide fundamental definitions and preliminary concepts to establish a solid foundation for our subsequent discussions. In Section 3, we demonstrate the Jensen-Mercer inequality and Hermite–Haamard–Mercer type inequalities for coordinated h-convex functions, contributing to the theoretical framework of our research. Section 4 presents numerical examples and computational analyses, offering empirical validation of the newly derived results and their practical significance. Finally, in Section 5, we present our conclusions, summarizing the key findings and implications of our study.

2. Preliminaries

In this section, we present some basic definitions and results which are required to establish the ongoing article.

Definition 1
[33] Let I be a convex subset of a real vector space and Ϝ:I MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaamysaiabgkOimprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHiLaeyOKH4Qae4xhHifaaa@54B4@  is said to be convex if

τϜ(ϰ)+(1τ)Ϝ(γ)Ϝ(τϰ+(1τ)γ),     (2.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaIOaacfiGae4h8dKVaaGykaiabgUcaRiaaiIcacaaIXaGaeyOeI0IaeqiXdqNaaGykaiab=X9a0laaiIcacqaHZoWzcaaIPaGaeyyzImRae8h3dqVaaGikaiabes8a0jab+b=a5labgUcaRiaaiIcacaaIXaGaeyOeI0IaeqiXdqNaaGykaiabeo7aNjaaiMcacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqGXaGaaeykaaaa@6C96@

for all τ0,1], and ϰ,γI. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeiiaiaaysW7cqaHepaDcqGHiiIZcaaIWaGaaGilaiaaigdacaaIDbGaaGilaiaabccacaqGHbGaaeOBaiaabsgacaqGGaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+caaISaGaeq4SdCMaeyicI4Saamysaiaai6caaaa@5B5D@

Definition 2

[4] A function  Ϝ:[0,+) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaaG4waiaaicdacaaISaGaey4kaSIaeyOhIuQaaGykaiabgkziUorr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHifaaa@5631@ is said to be s-convex if

τ s Ϝ(ϰ)+ (1τ) s Ϝ( ϖ 1 )Ϝ( τϰ+(1τ) ϖ 1 ),     (2.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaWbaaSqabeaacaWGZbaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9caaIOaacfiGae4h8dKVaaGykaiabgUcaRiaaiIcacaaIXaGaeyOeI0IaeqiXdqNaaGykamaaCaaaleqabaGaam4Caaaakiab=X9a0laaiIcacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyyzImRae8h3dq=aaeWaaeaacqaHepaDcqGFWpq+cqGHRaWkcaaIOaGaaGymaiabgkHiTiabes8a0jaaiMcacqaHwpGDdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqGYaGaaeykaaaa@715F@

for all τ0,1],s(0,1], and ϰ, ϖ 1 0,+). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeiiaiaaysW7cqaHepaDcqGHiiIZcaaIWaGaaGilaiaaigdacaaIDbGaaGilaiaadohacqGHiiIZcaaIOaGaaGimaiaaiYcacaaIXaGaaGyxaiaaiYcacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKVaaGilaiabeA9a2LqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHiiIZcaaIWaGaaGilaiabgUcaRiabg6HiLkaaiMcacaaIUaaaaa@68CB@

Definition 3

Let h:( 0,1 )J MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiQdadaqadaqaaiaaicdacaaISaGaaGymaaGaayjkaiaawMcaaiabgAOinlaadQeacqGHgksZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjabgkziUkab=1risbaa@4F7A@  be a positive function. A function Ϝ:I MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaamysaiabgAOinprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHiLaeyOKH4Qae4xhHifaaa@54B9@ is said to be h-convex or that F is said to belong to the class Sϰ( h,I ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dK=aaeWaaeaacaWGObGaaGilaiaadMeaaiaawIcacaGLPaaaaaa@4859@ , if F is non-negative and for all ϰ,γII MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+caaISaGaeq4SdCMaeyicI4SaamysaiabgIGiolaadMeaaaa@4A88@  and τ( 0,1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaeyicI48aaeWaaeaacaaIWaGaaGilaiaaigdaaiaawIcacaGLPaaaaaa@3E87@ , we have

h( τ )Ϝ(ϰ)+h(1τ)Ϝ(γ)Ϝ(τϰ+(1τ)γ).      (2.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaIOaacfiGae4h8dKVaaGykaiabgUcaRiaadIgacaaIOaGaaGymaiabgkHiTiabes8a0jaaiMcacqWFCpa9caaIOaGaeq4SdCMaaGykaiabgwMiZkab=X9a0laaiIcacqaHepaDcqGFWpq+cqGHRaWkcaaIOaGaaGymaiabgkHiTiabes8a0jaaiMcacqaHZoWzcaaIPaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOlaiaabodacaqGPaaaaa@70A0@

Definition 4

[9] A mapping Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIucaaMe8oaaa@57CD@ is convex on co-ordinates, if the following inequality holds:

τϜ( ϰ,γ )+( 1τ )Ϝ( ξ 1 , η 1 )Ϝ( τϰ+( 1τ ) ξ 1 ,τγ+( 1τ ) η 1 ),      (2.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHepaDaiaawIcacaGLPaaacqWFCpa9daqadaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaH3oaAdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHLjYScqWFCpa9daqadaqaaiabes8a0jab+b=a5labgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHepaDcqaHZoWzcqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHepaDaiaawIcacaGLPaaacqaH3oaAdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGUaGaaeinaiaabMcaaaa@8251@

for all( ϰ,γ ),( ξ 1 , η 1 )Δand τ0,1], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbqcfa4aaeWaaOqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+caaISaGaeq4SdCgakiaawIcacaGLPaaajugibiaaiYcacaaMe8Ecfa4aaeWaaOqaaKqzGeGaeqOVdGxcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqaH3oaAjuaGdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHiiIZcqGHuoarcaaMe8Uaaeyyaiaab6gacaqGKbGaaeiiaiabes8a0jabgIGiolaaicdacaaISaGaaGymaiaai2facaaISaaaaa@6B9F@

Dragomir introduced a modification for convex functions on coordinates, referred to as coordinated convex functions [9,10] as follows: A function Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIucaaMe8oaaa@57CD@ is convex on the co-ordinates on Δ if the partial differentiable mappings Ϝ γ :[ σ 1 , ϖ 1 ], Ϝ γ ( ξ 2 )=Ϝ( ξ 2 ,γ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daWgaaWcbaGaeq4SdCgabeaakiaaiQdadaWadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risjaaiYcacaaMe8Uae8h3dq=aaSbaaSqaaiabeo7aNbqabaGcdaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2dacqWFCpa9daqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiaaiYcacqaHZoWzaiaawIcacaGLPaaacaaMe8oaaa@70D6@ and Ϝ ϰ :[ σ 2 , ϖ 2 ], Ϝ ϰ ( η 2 )=Ϝ( ϰ, η 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daWgaaWcbaacfiGae4h8dKpabeaakiaaiQdadaWadaqaaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab91risjaaiYcacaaMe8Uae8h3dq=aaSbaaSqaaiab+b=a5dqabaGcdaqadaqaaiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaai2dacqWFCpa9daqadaqaaiab+b=a5laaiYcacqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@7186@  are convex for all ϰ[ σ 1 , ϖ 1 ],γ[ σ 2 , ϖ 2 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+cqGHiiIZdaWadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaaakiaawUfacaGLDbaacaaISaGaaGjbVlabeo7aNjabgIGiopaadmaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiaai6caaaa@5B7F@

A formal definition of coordinated convex functions can be expressed as follows:

Definition 5

[20] A mapping Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIucaaMe8oaaa@57CD@ is convex on co-ordinates, if the following inequality holds:

θτϜ( ϰ,γ )+θ( 1τ )Ϝ( ϰ, η 1 )+( 1θ )τϜ( ξ 1 ,γ )+( 1τ )( 1θ )Ϝ( ξ 1 , η 1 )         (2.5) Ϝ( θϰ+( 1θ ) ξ 1 ,τγ+( 1τ ) η 1 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiabeI7aXjabes8a0nrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dqVcdaqadaqaaGqbcKqzGeGae4h8dKVaaGilaiabeo7aNbGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaH4oqCkmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaajugibiab=X9a0RWaaeWaaeaajugibiab+b=a5laaiYcacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeqiXdqNae8h3dqVcdaqadaqaaKqzGeGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeo7aNbGccaGLOaGaayzkaaqcLbsacqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaadaqadaqaaKqzGeGaaGymaiabgkHiTiabeI7aXbGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH+oaEkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGUaGaaeynaiaabMcaaeaajugibiabgwMiZkab=X9a0RWaaeWaaeaajugibiabeI7aXjab+b=a5labgUcaROWaaeWaaeaajugibiaaigdacqGHsislcqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabes8a0jabeo7aNjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacaaISaaaaaa@BF52@

for all ( ϰ,γ ),( ξ 1 , η 1 )Δand θ,τ[ 0,1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGaaeiiaOWaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzGeGae8h8dKVaaGilaiabeo7aNbGccaGLOaGaayzkaaqcLbsacaaISaGaaGjbVRWaaeWaaeaajugibiabe67a4PWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaaakiaawIcacaGLPaaajugibiabgIGiolabgs5aejaaysW7caqGHbGaaeOBaiaabsgacaqGGaGaeqiUdeNaaGilaiabes8a0jabgIGioRWaamWaaeaajugibiaaicdacaaISaGaaGymaaGccaGLBbGaayzxaaqcLbsacaaIUaaaaa@70DB@

Definition 6

A mapping Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIucaaMe8oaaa@57CD@ is h-convex on co-ordinates, if the following inequality holds:

h( θ )h( τ )Ϝ( ϰ,γ )+h( θ )h( 1τ )Ϝ( ϰ, η 1 ) +h( 1θ )h( τ )Ϝ( ξ 1 ,γ )+h( 1τ )h( 1θ )Ϝ( ξ 1 , η 1 ) Ϝ( θϰ+( 1θ ) ξ 1 ,τγ+( 1τ ) η 1 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaadIgakmaabmaabaqcLbsacqaH4oqCaOGaayjkaiaawMcaaKqzGeGaamiAaOWaaeWaaeaajugibiabes8a0bGccaGLOaGaayzkaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=X9a0RWaaeWaaeaaiuGajugibiab+b=a5laaiYcacqaHZoWzaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamiAaOWaaeWaaeaajugibiabeI7aXbGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqGFWpq+caaISaGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaaGymaiabgkHiTiabeI7aXbGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiab=X9a0RWaaeWaaeaajugibiabe67a4PWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacqaHZoWzaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamiAaOWaaeWaaeaajugibiaaigdacqGHsislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaamiAaOWaaeWaaeaajugibiaaigdacqGHsislcqaH4oqCaOGaayjkaiaawMcaaKqzGeGae8h3dqVcdaqadaqaaKqzGeGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeE7aOPWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaOGaayjkaiaawMcaaaqaaKqzGeGaeyyzImRae8h3dqVcdaqadaqaaKqzGeGaeqiUdeNae4h8dKVaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabeI7aXbGccaGLOaGaayzkaaqcLbsacqaH+oaEkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqiXdqNaeq4SdCMaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaaakiaawIcacaGLPaaajugibiaaiYcaaaaa@C910@

for all( ϰ,γ ),( ξ 1 , η 1 )Δ andθ,τ[ 0,1 ].      (2.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGMbGaae4BaiaabkhacaqGGaGaaeyyaiaabYgacaqGSbGcdaqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+caaISaGaeq4SdCgakiaawIcacaGLPaaajugibiaaiYcacaaMe8UcdaqadaqaaKqzGeGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabeE7aOPWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyicI4SaeyiLdqKaaeiiaiaabggacaqGUbGaaeizaiaaysW7cqaH4oqCcaaISaGaeqiXdqNaeyicI4ScdaWadaqaaKqzGeGaaGimaiaaiYcacaaIXaaakiaawUfacaGLDbaajugibiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqG2aGaaeykaaaa@7780@

Definition 7

 [7] Let F be h-convex function defined on the real interval χ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaaIUaaaaa@46AD@  If ϰ,γ, ϰ 3 ,..., ϰ n χ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+caaISaGaeq4SdCMaaGilaiab=b=a5paaBaaaleaacaaIZaaabeaakiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGae8h8dK=aaSbaaSqaaiaad6gaaeqaaOGaeyicI4Saeq4Xdmgaaa@5467@  and ξ 1 1 , ξ 1 2 , ξ 1 3 ,..., ξ 1 n 0, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaakmaaBaaaleaacaaIYaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGcdaWgaaWcbaGaaG4maaqabaGccaaISaGaaGOlaiaai6cacaaIUaGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaakmaaBaaaleaacaWGUbaabeaakiabgwMiZkaaicdacaaISaaaaa@4E8F@  also h:ζ( 0, ) + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiQdacqaH2oGEcqGHgksZdaqadaqaaiaaicdacaaISaGaeyOhIukacaGLOaGaayzkaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiabgUcaRaaaaaa@4F17@  be a supermultiplicative function then

i=1 n h( ξ i ξ n )Ϝ( ϰ i )Ϝ( 1 ξ 1 n i=1 n ξ i ϰ i ),       (2.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiabe67a4naaBaaaleaacaWGPbaabeaaaOqaaiabe67a4naaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0laaiIcaiuGacqGFWpq+daWgaaWcbaGaamyAaaqabaGccaaIPaGaeyyzImRae8h3dq=aaeWaaeaadaWcaaqaaiaaigdaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGcdaWgaaWcbaGaamOBaaqabaaaaOWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccqaH+oaEdaWgaaWcbaGaamyAaaqabaGccqGFWpq+daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOlaiaabEdacaqGPaaaaa@7599@

where ξ n = i=1 n ξ i . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaOGaaGypamaaqadabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGOlaaaa@444C@

Definition 8

[34] Let h:ζ + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiQdacqaH2oGEcqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaey4kaScaaaaa@48AC@  be a supermultiplicative function Let ϰ,γ, ϰ 3 ,..., ϰ n χ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+caaISaGaeq4SdCMaaGilaiab=b=a5paaBaaaleaacaaIZaaabeaakiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGae8h8dK=aaSbaaSqaaiaad6gaaeqaaOGaeyicI4Saeq4Xdmgaaa@5467@ and q 1 , q 2 , q 3 ,..., q n + ,( n2 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaadghadaWgaaWcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaey4kaScaaOGaaGilamaabmaabaGaamOBaiabgwMiZkaaikdaaiaawIcacaGLPaaacaaISaaaaa@5820@  such that Q n = i=1 n q i  and  i=1 n h( q i Q n )1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrbGcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGypaOWaaabmaeqaleaajugibiaadMgacaaI9aGaaGymaaWcbaqcLbsacaWGUbaacqGHris5aiaadghakmaaBaaaleaajugibiaadMgaaSqabaqcLbsacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaOWaaabmaeqaleaajugibiaadMgacaaI9aGaaGymaaWcbaqcLbsacaWGUbaacqGHris5aiaadIgakmaabmaabaWaaSaaaeaajugibiaadghakmaaBaaaleaajugibiaadMgaaSqabaaakeaajugibiaadgfakmaaBaaaleaajugibiaad6gaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacqGHKjYOcaaIXaGaaGOlaaaa@5DA5@  If F be h-convex function defined on the real interval χ, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaaISaaaaa@46AB@  then for any finite positive increasing sequence ( ϰ k ) k=1 n χ, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5paaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaamaaDaaaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaaOGaeyicI4Saeq4XdmMaaGilaaaa@4DC3@  we have

Ϝ( ϰ )+Ϝ( ϰ n ) i=1 n h( qi Q n )Ϝ( ϰ i )           (2.8) Ϝ( ϰ+ ϰ n 1 Q n k=1 n q k ξ k ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeGae8h3dqVcdaqadaqaaGqbcKqzGeGae4h8dKpakiaawIcacaGLPaaajugibiabgUcaRiab=X9a0RWaaeWaaeaajugibiab+b=a5RWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0IcdaaeWbqabSqaaKqzGeGaamyAaiaai2dacaaIXaaaleaajugibiaad6gaaiabggHiLdGaamiAaOWaaeWaaeaadaWcaaqaaKqzGeGaamyCaiaadMgaaOqaaKqzGeGaamyuaOWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaaaakiaawIcacaGLPaaajugibiab=X9a0laaiIcacqGFWpq+kmaaBaaaleaajugibiaadMgaaSqabaqcLbsacaaIPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqG4aGaaeykaaGcbaqcLbsacqGHLjYScqWFCpa9kmaabmaabaqcLbsacqGFWpq+cqGHRaWkcqGFWpq+kmaaBaaaleaajugibiaad6gaaSqabaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaajugibiaadgfakmaaBaaaleaajugibiaad6gaaSqabaaaaOWaaabCaeqaleaajugibiaadUgacaaI9aGaaGymaaWcbaqcLbsacaWGUbaacqGHris5aiaadghakmaaBaaaleaajugibiaadUgaaSqabaqcLbsacqaH+oaEkmaaBaaaleaajugibiaadUgaaSqabaaakiaawIcacaGLPaaajugibiaai6caaaaa@9AAF@

Definition 9

[35] This definition provided by Stromer, describes a function g:I + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiQdacaWGjbGaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiabgUcaRaaakiabgkziUkab=1risbaa@4AD7@  as a super-multiplicative if it satisfies the inequality

g(α)g( β )g( αβ ),        (2.9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiIcacqaHXoqycaaIPaGaam4zamaabmaabaGaeqOSdigacaGLOaGaayzkaaGaeyizImQaam4zamaabmaabaGaeqySdeMaeqOSdigacaGLOaGaayzkaaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGUaGaaeyoaiaabMcaaaa@5041@

for all α,βI. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGilaiabek7aIjabgIGiolaadMeacaaIUaaaaa@3E8A@ Conversely, if the inequality is reversed, the function g is termed as sub-multiplicative.

Example 1

Consider the function g( ϰ )=( σ 1 +ϰ ) p1 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabmaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+aiaawIcacaGLPaaacaaI9aGaaGikaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiab=b=a5laaiMcadaahaaWcbeqaaiaadchacqGHsislcaaIXaaaaOGaaGilaaaa@51B9@  where ϰ0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKVaeyyzImRaaGimaiaai6cacaaMe8oaaa@49D9@ If σ 1 1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyyzImRaaGymaiaaiYcaaaa@3D75@  then for p( 0,1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabgIGiopaabmaabaGaaGimaiaaiYcacaaIXaaacaGLOaGaayzkaaGaaGjbVdaa@3F44@ the function g is super-multiplicative, it means the function g satisfies the inequality (2.9), on the other hand, p>1 the function g is sub-multiplicative.

3. Main results

In this section, we introduce Jensen-Mercer inequality and several Hermite–Hadamard-Mercer type inequalities tailored for coordinated h-convex functions.

Lemma 1

 Let h:J 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiQdacaWGkbGaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqWFDeIuaaa@4AB3@  is a non-negative supper multiplicative function, and a,c,b,e[ 0,1 ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiYcacaWGJbGaaGilaiaadkgacaaISaGaamyzaiabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGilaaaa@43A2@  such that h( a )+h( c )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4196@  and h( b )+h( e )1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqGHKjYOcaaIXaGaaGOlaaaa@4251@  Then Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIuaaa@5640@  is any co-ordinated h-convex function, and finite positive increasing sequences ( η k ) k=1 n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaqhaaWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaaaaaa@3F77@  and ( ξ k ) k=1 n . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaqhaaWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaaakiaai6caaaa@4050@  Then,

Ϝ( η 1 + η n η k , ξ 1 + ξ n ξ k ) Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n )Ϝ( η k , ξ k ),     (3.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeGae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaeq4TdGMcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaeyOeI0Iaeq4TdGMcdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgUcaRiabe67a4PWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiabgkHiTiabe67a4PWaaSbaaSqaaKqzGeGaam4AaaWcbeaaaOGaayjkaiaawMcaaaqaaKqzGeGaeyizImQae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaamOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaam4AaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabMcaaaaa@B0F9@

where 1kn. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadUgacqGHKjYOcaWGUbGaaGOlaaaa@3E4A@

Proof. Assume that 0< η 1 η 2 ... η n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiYdacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHKjYOcqaH3oaAdaWgaaWcbaGaaGOmaaqabaGccqGHKjYOcaaIUaGaaGOlaiaai6cacqGHKjYOcqaH3oaAdaWgaaWcbaGaamOBaaqabaaaaa@4857@ and 0< ξ 1 ξ 2 ... ξ n , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiYdacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHKjYOcqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHKjYOcaaIUaGaaGOlaiaai6cacqGHKjYOcqaH+oaEdaWgaaWcbaGaamOBaaqabaGccaaISaaaaa@495C@ also a,c,b,e[ 0,1 ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiYcacaWGJbGaaGilaiaadkgacaaISaGaamyzaiabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGilaaaa@43A2@ such that h( a )+h( c )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4196@ and h( b )+h( e )1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqGHKjYOcaaIXaGaaGOlaaaa@4251@ Let us write γ k = η 1 + η n η k . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaSbaaSqaaiaadUgaaeqaaOGaaGypaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWGUbaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaWGRbaabeaakiaai6caaaa@45E9@ Then η 1 + η n = η k + γ k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGypaiabeE7aOnaaBaaaleaacaWGRbaabeaakiabgUcaRiabeo7aNnaaBaaaleaacaWGRbaabeaaaaa@451C@ so that the pairs η 1 , η n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaysW7cqaH3oaAdaWgaaWcbaGaamOBaaqabaaaaa@3F35@ and η k , γ k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaSbaaSqaaiaadUgaaeqaaOGaaGilaiaaysW7cqaHZoWzdaWgaaWcbaGaam4Aaaqabaaaaa@3F62@ possess the same midpoint. Since that is the case there exists a,c[ 0,1 ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiYcacaWGJbGaeyicI48aamWaaeaacaaIWaGaaGilaiaaigdaaiaawUfacaGLDbaacaaISaaaaa@4065@ such that

η k =a η 1 +c η n , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaSbaaSqaaiaadUgaaeqaaOGaaGypaiaadggacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGJbGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaaaa@43FB@

γ k =c η 1 +a η n . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaSbaaSqaaiaadUgaaeqaaOGaaGypaiaadogacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGHbGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGOlaaaa@43F8@

Similarly, it can be written as ζ k = ξ 1 + ξ n ξ k . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdO3aaSbaaSqaaiaadUgaaeqaaOGaaGypaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabe67a4naaBaaaleaacaWGUbaabeaakiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaakiaai6caaaa@4644@ Then ξ 1 + ξ n = ξ k + η k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaad6gaaeqaaOGaaGypaiabe67a4naaBaaaleaacaWGRbaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWGRbaabeaaaaa@4566@ so that the pairs ξ 1 , ξ n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGUbaabeaaaaa@3DD6@ and ξ k , η k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaadUgaaeqaaOGaaGilaiaaysW7cqaH3oaAdaWgaaWcbaGaam4Aaaqabaaaaa@3F7E@ share the same midpoint. Since that is the case there exists b,e[ 0,1 ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiYcacaWGLbGaeyicI48aamWaaeaacaaIWaGaaGilaiaaigdaaiaawUfacaGLDbaacaaISaaaaa@4068@ such that

ξ k =b ξ 1 +e ξ n , ζ k =e ξ 1 +b ξ n , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiabe67a4PWaaSbaaSqaaKqzGeGaam4AaaWcbeaajugibiaai2dacaWGIbGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaey4kaSIaamyzaiabe67a4PWaaSbaaSqaaKqzGeGaamOBaaWcbeaajugibiaaiYcaaOqaaKqzGeGaeqOTdONcdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaaGypaiaadwgacqaH+oaEkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWGIbGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGilaaaaaa@5995@

where s,τ[ 0,1 ] and 1kn. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqG3bGaaeiAaiaabwgacaqGYbGaaeyzaiaabccacaWGZbGaaGilaiabes8a0jabgIGioRWaamWaaeaajugibiaaicdacaaISaGaaGymaaGccaGLBbGaayzxaaqcLbsacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaaigdacqGHKjYOcaWGRbGaeyizImQaamOBaiaai6caaaa@52E8@

Ϝ( γ k , ζ k )=Ϝ( c η 1 +a η n ,e ξ 1 +b ξ n ) h( c )h( e )Ϝ( η 1 , ξ 1 )+h( c )h( b )Ϝ( η 1 , ξ n ) +h( a )h( e )Ϝ( η n , ξ 1 )+h( a )h( b )Ϝ( η n , ξ n ),       (3.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeGae8h3dqVcdaqadaqaaKqzGeGaeq4SdCMcdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaaGilaiabeA7a6PWaaSbaaSqaaKqzGeGaam4AaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGypaiab=X9a0RWaaeWaaeaajugibiaadogacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWGHbGaeq4TdGMcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGilaiaadwgacqaH+oaEkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWGIbGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHKjYOcaWGObGcdaqadaqaaKqzGeGaam4yaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamyzaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaam4yaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamOyaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaamyyaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamyzaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaamyyaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamOyaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabkdacaqGPaaaaaa@D046@

Ϝ( η k , ξ k )=Ϝ( a η 1 +c η n ,b ξ 1 +e ξ n ) h( a )h( b )Ϝ( η 1 , ξ 1 )+h( a )h( e )Ϝ( η 1 , ξ n ) +h( c )h( b )Ϝ( η n , ξ 1 )+h( c )h( e )Ϝ( η n , ξ n ).       (3.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeGae8h3dqVcdaqadaqaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGaaGilaiabe67a4PWaaSbaaSqaaKqzGeGaam4AaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGypaiab=X9a0RWaaeWaaeaajugibiaadggacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWGJbGaeq4TdGMcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGilaiaadkgacqaH+oaEkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacqGHRaWkcaWGLbGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHKjYOcaWGObGcdaqadaqaaKqzGeGaamyyaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamOyaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaamyyaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamyzaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaaigdaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaam4yaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamOyaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaaIXaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGObGcdaqadaqaaKqzGeGaam4yaaGccaGLOaGaayzkaaqcLbsacaWGObGcdaqadaqaaKqzGeGaamyzaaGccaGLOaGaayzkaaqcLbsacqWFCpa9kmaabmaabaqcLbsacqaH3oaAkmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaeqOVdGNcdaWgaaWcbaqcLbsacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabodacaqGPaaaaaa@D054@

By Jensen inequality for co-ordinated h-convex functions and using (3.3)

Ϝ( γ k , ζ k ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo7aNnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH2oGEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaaa@4B5B@

h( c )h( e )Ϝ( η 1 , ξ 1 )+h( c )h( b )Ϝ( η 1 , ξ n )+h( a )h( e )Ϝ( η n , ξ 1 )+h( a )h( b )Ϝ( η n , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcaWGObWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@88DD@

( 1h( a ) )( 1h( b ) )Ϝ( η 1 , ξ 1 )+( 1h( a ) )( 1h( e ) )Ϝ( η 1 , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaacaaIXaGaeyOeI0IaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaadIgadaqadaqaaiaadggaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWGObWaaeWaaeaacaWGLbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@71EC@

+( 1h( c ) )( 1h( b ) )Ϝ( η n , ξ 1 )+( 1h( c ) )( 1h( e ) )Ϝ( η n , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaaGymaiabgkHiTiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWGObWaaeWaaeaacaWGLbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@718D@

=Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaaaa@6D01@

[ ( h( a )+h( b )h( a )h( b ) )Ϝ( η 1 , ξ 1 )+( h( a )+h( e )h( a )h( e ) )Ϝ( η 1 , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamqaaeaadaqadaqaaiaadIgadaqadaqaaiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGObWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyOeI0IaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqGHsislcaWGObWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamyzaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaGaay5waaaaaa@7980@

+ ( h( c )+h( b )h( c )h( b ) )Ϝ( η n , ξ 1 )+( h( c )+h( e )h( c )h( e ) )Ϝ( η n , ξ n ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaamGaaeaadaqadaqaaiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacqGHRaWkcaWGObWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyOeI0IaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaaaiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqGHsislcaWGObWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamyzaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaGaayzxaaaaaa@79F0@

Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@6DEF@

[ h( a )h( b )Ϝ( η 1 , ξ 1 )+h( a )h( e )Ϝ( η 1 , ξ n )+h( c )h( b )Ϝ( η n , ξ 1 )+h( c )h( e )Ϝ( η n , ξ n ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaacaWGObWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkcaWGObWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGLbaacaGLOaGaayzkaaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@8A07@

Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n )Ϝ( η k , ξ k ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHsislcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaISaaaaa@79E4@

where h( a )+h( b )h( a )h( b )h( a )h( b ),h( a )+h( e )h( a )h( e )h( a )h( e ),h( c )+h( b )h( c )h( b )h( c )h( b ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaacqGHsislcaWGObWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiabgwMiZkaadIgadaqadaqaaiaadggaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaaGilaiaaysW7caWGObWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaey4kaSIaamiAamaabmaabaGaamyzaaGaayjkaiaawMcaaiabgkHiTiaadIgadaqadaqaaiaadggaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGLbaacaGLOaGaayzkaaGaeyyzImRaamiAamaabmaabaGaamyyaaGaayjkaiaawMcaaiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacaaISaGaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadkgaaiaawIcacaGLPaaacqGHsislcaWGObWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamOyaaGaayjkaiaawMcaaiabgwMiZkaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaaGilaiaaysW7aaa@8415@ and h( c )+h( e )h( c )h( e )h( c )h( e ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaam4yaaGaayjkaiaawMcaaiabgUcaRiaadIgadaqadaqaaiaadwgaaiaawIcacaGLPaaacqGHsislcaWGObWaaeWaaeaacaWGJbaacaGLOaGaayzkaaGaamiAamaabmaabaGaamyzaaGaayjkaiaawMcaaiabgwMiZkaadIgadaqadaqaaiaadogaaiaawIcacaGLPaaacaWGObWaaeWaaeaacaWGLbaacaGLOaGaayzkaaaaaa@4F59@ for a,c,b,e[ 0,1 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaaiYcacaWGJbGaaGilaiaadkgacaaISaGaamyzaiabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaaaaa@42EC@ .

Hence, we have

Ϝ( η 1 + η n η k , ξ 1 + ξ n ξ k ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWGUbaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamOBaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaaaaa@5A16@

Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n )Ϝ( η k , ξ k ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHsislcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@79E6@

The proof of Lemma 1 is completed.

Theorem 2

 Let z 1 , z 2 , z 3 ,..., z n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaadQhadaWgaaWcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@50C1@  and q 1 , q 2 , q 3 ,..., q n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghadaWgaaWcbaGaaG4maaqabaGccaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaadghadaWgaaWcbaGaamOBaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@509D@ , ( n2 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGUbGaeyyzImRaaGOmaaGaayjkaiaawMcaaiaaiYcaaaa@3D3E@  such that n = k=1 n z k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKeIwdaWgaaWcbaGaamOBaaqabaGccaaI9aWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWG6bWaaSbaaSqaaiaadUgaaeqaaaaa@4BCE@  and n = k=1 n q k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFAesudaWgaaWcbaGaamOBaaqabaGccaaI9aWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGXbWaaSbaaSqaaiaadUgaaeqaaaaa@4BB2@ . Also, assume that h:J 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiQdacaWGkbGaeyOGIW8efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqWFDeIuaaa@4AB3@  is a non-negative supper multiplicative function with k=1 n h( z k n )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=rsiAnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@5007@  and k=1 n h( q k n )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadghadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=PrirnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaacqGHKjYOcaaIXaaaaa@4FEB@  respectively. If the function Ϝ:Δ 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOGIW8efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIudaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqGFDeIuaaa@5640@  is co-ordinated h-convex on Δ=[ η 1 , η n ]×[ ξ 1 , ξ n ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaaGypamaadmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeE7aOnaaBaaaleaacaWGUbaabeaaaOGaay5waiaaw2faaiabgEna0oaadmaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGUbaabeaaaOGaay5waiaaw2faaiaaysW7aaa@4DBE@ then for any finite positive sequences ( η k ) k=1 n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaqhaaWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaaaaaa@3F77@  and ( ξ k ) k=1 n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaqhaaWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaaaaaa@3F8E@  from Δ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaaGOlaaaa@39A9@  Then

Ϝ( η 1 + η n 1 n k=1 n z k η k , ξ 1 + ξ n 1 n k=1 n q k ξ k ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWGUbaabeaakiabgkHiTmaalaaabaGaaGymaaqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4hjHO1aaSbaaSqaaiaad6gaaeqaaaaakmaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOEamaaBaaaleaacaWGRbaabeaakiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamOBaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaacqGFAesudaWgaaWcbaGaamOBaaqabaaaaOWaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGXbWaaSbaaSqaaiaadUgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@797B@

Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGUbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaaa@6DEF@

k=1 n h( z k n ) k=1 n h( q k n )Ϝ( η k , ξ k ).      (3.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=rsiAnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadIgadaqadaqaamaalaaabaGaamyCamaaBaaaleaacaWGRbaabeaaaOqaaiab=PrirnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaadUgaaeqaaOGaaGilaiabe67a4naaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG0aGaaeykaaaa@772E@

Proof. Since 1 n k=1 n z k =1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKeIwdaWgaaWcbaGaamOBaaqabaaaaOWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWG6bWaaSbaaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@4D5E@ and 1 n k=1 n q k =1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFAesudaWgaaWcbaGaamOBaaqabaaaaOWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGXbWaaSbaaSqaaiaadUgaaeqaaOGaaGypaiaaigdacaaISaaaaa@4DF8@ we have:

Ϝ( η 1 + η n 1 n k=1 n z k η k , ξ 1 + ξ n 1 n k=1 n q k ξ k ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWGUbaabeaakiabgkHiTmaalaaabaGaaGymaaqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4hjHO1aaSbaaSqaaiaad6gaaeqaaaaakmaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOEamaaBaaaleaacaWGRbaabeaakiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamOBaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaacqGFAesudaWgaaWcbaGaamOBaaqabaaaaOWaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGXbWaaSbaaSqaaiaadUgaaeqaaOGaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaaaa@797B@

=Ϝ( k=1 n z k n ( η 1 + η n η k ), k=1 n q k n ( ξ 1 + ξ n ξ k ) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakmaalaaabaGaamOEamaaBaaaleaacaWGRbaabeaaaOqaamrr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4hjHO1aaSbaaSqaaiaad6gaaeqaaaaakmaabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaGilamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaSaaaeaacaWGXbWaaSbaaSqaaiaadUgaaeqaaaGcbaGae4NgHe1aaSbaaSqaaiaad6gaaeqaaaaakmaabmaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@7BDE@

k=1 n h( z k n ) k=1 n h( q k n )Ϝ( η 1 + η n η k , ξ 1 + ξ n ξ k ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=rsiAnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadIgadaqadaqaamaalaaabaGaamyCamaaBaaaleaacaWGRbaabeaaaOqaaiab=PrirnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaadUgaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabe67a4naaBaaaleaacaWGUbaabeaakiabgkHiTiabe67a4naaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaaa@7EA7@

k=1 n h( z k n ) k=1 n h( q k n )[ Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n )Ϝ( η k , ξ k ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=rsiAnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadIgadaqadaqaamaalaaabaGaamyCamaaBaaaleaacaWGRbaabeaaaOqaaiab=PrirnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaWadaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgaGae4h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae4h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae4h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae4h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyOeI0Iae4h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaam4AaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@9DF8@

=Ϝ( η 1 , ξ 1 )+Ϝ( η 1 , ξ n )+Ϝ( η n , ξ 1 )+Ϝ( η n , ξ n ) k=1 n h( z k n ) k=1 n h( q k n )Ϝ( η k , ξ k ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGObWaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaakeaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+rsiAnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadIgadaqadaqaamaalaaabaGaamyCamaaBaaaleaacaWGRbaabeaaaOqaaiab+PrirnaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaacqWFCpa9daqadaqaaiabeE7aOnaaBaaaleaacaWGRbaabeaakiaaiYcacqaH+oaEdaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@9BD3@

Hence the proof of Theorem 2 is completed.

Theorem 3

Suppose that Ϝ:Δ=[ σ 1 , ϖ 1 ]×[ σ 2 , ϖ 2 ] 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaaGypamaadmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIXaaabeaaaOGaay5waiaaw2faaiabgEna0oaadmaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiabgAOinprr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHi1aaWbaaSqabeaacaaIYaaaaOGaeyOKH4Qae4xhHiLaaGjbVdaa@6AFE@ be an h-convex function on co-ordinates on Δ and let Ϝ L 2 ( Δ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9cqGHiiIZcaWGmbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqGHuoaraiaawIcacaGLPaaaaaa@49A3@  and h L 1 ( [ 0,1 ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgIGiolaadYeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@4163@ . Then one has the inequalities:

1 4 ( h( 1 2 ) ) 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGinamaabmaabaGaamiAamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@6A49@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

4[ Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) ]× ( 0 1 h( τ )dτ ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaGinamaadmaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHxdaTdaqadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadIgadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaadsgacqaHepaDaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@7F92@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) ]× ( 0 1 h( τ )dτ ) 2 ,       (3.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiabgEna0oaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeynaiaabMcaaaa@8603@

where ξ 1 , η 1 [ σ 1 , ϖ 1 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgIGiopaadmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIXaaabeaaaOGaay5waiaaw2faaaaa@473B@ and ξ 2 , η 2 [ σ 2 , ϖ 2 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeE7aOnaaBaaaleaacaaIYaaabeaakiabgIGiopaadmaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiaai6caaaa@47F7@

Proof. Since Ϝ:Δ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9caaI6aGaeyiLdqKaeyOKH46efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIucaaMe8oaaa@53CA@ is h-convex function on co-ordinates also Ψ ϰ :[ σ 2 , ϖ 2 ], Ψ ϰ ( γ )=Ϝ( ϰ,γ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpabeaakiaaiQdadaWadaqaaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risjaaiYcacaaMe8UaeuiQdK1aaSbaaSqaaiab=b=a5dqabaGcdaqadaqaaiabeo7aNbGaayjkaiaawMcaaiaai2daiuaacqqFCpa9daqadaqaaiab=b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaaISaaaaa@6EBE@ is h-convex on [ σ 2 , ϖ 2 ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeqO1dy3aaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaayzxaaGaaGilaiaaysW7aaa@41F5@ for all ϰ[ σ 1 , ϖ 1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+cqGHiiIZdaWadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaaakiaawUfacaGLDbaacaaIUaaaaa@4DE9@ Then by Hermite–Hadamard-Mercer Inequality for h-convex functions

1 2h( 1 2 ) Ψ ϰ ( σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaiabfI6aznaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5dqabaGcdaqadaqaaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaaaaa@5AA9@

1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ψ ϰ ( γ )dγ[ Ψ ϰ ( σ 2 + ϖ 2 ξ 2 )+ Ψ ϰ ( σ 2 + ϖ 2 η 2 ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiabfI6aznaaBaaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5dqabaGcdaqadaqaaiabeo7aNbGaayjkaiaawMcaaiaadsgacqaHZoWzcqGHKjYOdaWadaqaaiabfI6aznaaBaaaleaacqWFWpq+aeqaaOWaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqqHOoqwdaWgaaWcbaGae8h8dKpabeaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@8EF4@

×( 0 1 h( τ )dτ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaWGObWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqhacaGLOaGaayzkaaGaaGilaaaa@4672@

i.e.

1 2h( 1 2 ) Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@5BFE@

1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbaa@6C51@

[ Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 )+Ϝ( ϰ, σ 2 + ϖ 2 η 2 ) ]×( 0 1 h( τ )dτ ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaacfiGae4h8dKVaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGae4h8dKVaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiabgEna0oaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaaiaai6caaaa@7695@

Integrating the above inequality with respect to ϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+aaa@4387@ , we get

1 2h( 1 2 )( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadsgacqGFWpq+aaa@7CBF@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

[ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamqaaeaadaWcaaqaaiaaigdaaeaadaqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaWGKbGae4h8dKpacaGLBbaaaaa@766A@

+ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 η 2 )dϰ ]×( 0 1 h( τ )dτ ).      (3.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaadaqadaqaaiabeE7aOnaaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacaWGKbGae4h8dKpacaGLDbaacqGHxdaTdaqadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadIgadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaadsgacqaHepaDaiaawIcacaGLPaaacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeOnaiaabMcaaaa@8BB6@

Similarly, for the mapping Ψ γ :[ σ 1 , ϖ 1 ], Ψ γ ( ϰ )=Ϝ( ϰ,γ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaSbaaSqaaiabeo7aNbqabaGccaaI6aWaamWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaaISaGaaGjbVlabfI6aznaaBaaaleaacqaHZoWzaeqaaOWaaeWaaeaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbciab+b=a5dGaayjkaiaawMcaaiaai2daiyaacqqFCpa9daqadaqaaiab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaaISaGaaGjbVdaa@6F7F@ we get

1 2h( 1 2 )( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaaGilaiabeo7aNbGaayjkaiaawMcaaiaadsgacqaHZoWzaaa@7B22@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

[ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 η 1 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamqaaeaadaWcaaqaaiaaigdaaeaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaikdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHZoWzaiaawIcacaGLPaaacaWGKbGaeq4SdCgacaGLBbaaaaa@74B7@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 ,γ )dγ ]×( 0 1 h( τ )dτ ).      (3.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaikdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHZoWzaiaawIcacaGLPaaacaWGKbGaeq4SdCgacaGLDbaacqGHxdaTdaqadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadIgadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaadsgacqaHepaDaiaawIcacaGLPaaacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4naiaabMcaaaa@8A32@

By adding the inequalities (3.6) and (3.7), we get

1 4h( 1 2 ) [ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGinaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamaadeaabaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadsgacqGFWpq+aiaawUfaaaaa@7E87@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 ,γ )dγ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaamGaaeaadaWcaaqaaiaaigdaaeaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaikdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbGaayzxaaaaaa@7849@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

1 2 { [ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmaaaadaGabaqaamaadeaabaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiab+b=a5dGaay5waaaacaGL7baaaaa@790B@

+ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 η 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiab+b=a5daa@7485@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 η 1 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbaa@72E9@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 ,γ )dγ ] }×( 0 1 h( τ )dτ ).      (3.8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaadaWacaqaaiabgUcaRmaalaaabaGaaGymaaqaamaabmaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaamaapedabeWcbaGaeq4Wdm3aaSbaaeaacaaIYaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaikdaaeqaaiabgkHiTiabe67a4naaBaaabaGaaGOmaaqabaaabaGaeq4Wdm3aaSbaaeaacaaIYaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaikdaaeqaaiabgkHiTiabeE7aOnaaBaaabaGaaGOmaaqabaaaniabgUIiYdWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo7aNbGaayjkaiaawMcaaiaadsgacqaHZoWzaiaaw2faaaGaayzFaaGaey41aq7aaeWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaWGObWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqhacaGLOaGaayzkaaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabIdacaqGPaaaaa@8B50@

Now by Hadamard's Mercer inequality for h-convex functions, we have:

1 2h( 1 2 ) Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaaaaa@67CB@

1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 )dϰ, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadsgacqGFWpq+caaISaaaaa@7A71@

1 2h( 1 2 ) Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaaaaa@67CB@

1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 ,γ )dγ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaaGilaiabeo7aNbGaayjkaiaawMcaaiaadsgacqaHZoWzcaaIUaaaaa@78D6@

Adding these inequalities, we have:

1 h( 1 2 ) Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamiAamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@670F@

1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadsgacqGFWpq+aaa@79BB@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 ,γ )dγ. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaaGilaiabeo7aNbGaayjkaiaawMcaaiaadsgacqaHZoWzcaaIUaaaaa@7803@

By dividing both sides of the above inequality 4h( 1 2 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGilaaaa@3CFB@ we get

1 4 ( h( 1 2 ) ) 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGinamaabmaabaGaamiAamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@6A49@

1 4h( 1 2 ) [ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 + η 2 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaGaaGinaiaadIgadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamaadeaabaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadsgacqGFWpq+aiaawUfaaaaa@803C@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 ,γ )dγ ].      (3.9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaikdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbGaayzxaaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabMdacaqGPaaaaa@804D@

Finally, by the inequality (3.8), we get:

1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiab+b=a5daa@73BA@

[ Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 ξ 2 )+Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 ξ 2 ) ]( 0 1 h( τ )dτ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaaiaaiYcaaaa@838F@

1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 η 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiab+b=a5daa@73A3@

[ Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 η 2 )+Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 η 2 ) ]( 0 1 h( τ )dτ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaaiaaiYcaaaa@8361@

1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 η 1 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbaa@7207@

[ Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 ξ 2 )+Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 η 2 ) ]( 0 1 h( τ )dτ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaaiaaiYcaaaa@8361@

1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbaa@721E@

[ Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 ξ 2 )+Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 η 2 ) ]( 0 1 h( τ )dτ ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaaiaai6caaaa@8391@

Adding the above inequalities, we get

1 2 [ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 ξ 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWabaqaamaalaaabaGaaGymaaqaamaabmaabaGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaamaapedabeWcbaGaeq4Wdm3aaSbaaeaacaaIXaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaigdaaeqaaiabgkHiTiabeE7aOnaaBaaabaGaaGymaaqabaaabaGaeq4Wdm3aaSbaaeaacaaIXaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaigdaaeqaaiabgkHiTiabe67a4naaBaaabaGaaGymaaqabaaaniabgUIiYdWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=X9a0paabmaabaacfiGae4h8dKVaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaadsgacqGFWpq+aiaawUfaaaaa@763C@

+ 1 ( η 1 ξ 1 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 Ϝ( ϰ, σ 2 + ϖ 2 η 2 )dϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacqaHdpWCdaWgaaqaaiaaigdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGymaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaamizaiab+b=a5daa@7485@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 η 1 ,γ )dγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNbaa@72E9@

+ 1 ( ξ 2 η 2 ) σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( σ 1 + ϖ 1 ξ 1 ,γ )dγ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaikdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIYaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHZoWzaiaawIcacaGLPaaacaWGKbGaeq4SdCgacaGLDbaaaaa@73FE@

[ Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 ξ 2 )+Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 ξ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamqaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabe67a4naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waaaaaa@75C7@

+Ϝ( σ 1 + ϖ 1 η 1 , σ 2 + ϖ 2 η 2 )+Ϝ( σ 1 + ϖ 1 ξ 1 , σ 2 + ϖ 2 η 2 ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaayzxaaaaaa@74C9@

× ( 0 1 h( τ )dτ ) 2 .      (3.10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaWGObWaaeWaaeaacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqhacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqGWaGaaeykaaaa@4F5E@

From (3.6)-(3.10), and by using Jensen Mercer inequality for co-ordinated h-convex functions, we get (3.5). The proof of Theorem 3 is completed.

Corollary 1

If we replace Ϝ( τ )= τ s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabes8a0bGaayjkaiaawMcaaiaai2dacqaHepaDdaahaaWcbeqaaiaadohaaaaaaa@4A6B@  in Theorem 3, we get the inequalities:

4 s1 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCaaaleqabaGaam4CaiabgkHiTiaaigdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@65DC@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

4[ Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) ( s+1 ) 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaGinamaadmaabaWaaSaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaamaabmaabaGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@7598@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) ( s+1 ) 2 ].       (3.11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaakiaawUfacaGLDbaacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqGXaGaaeykaaaa@7CB1@

Remark 1

If we replace Ϝ( τ )=τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabes8a0bGaayjkaiaawMcaaiaai2dacqaHepaDaaa@4946@  in Theorem 3, we get the inequalities,

Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@6247@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+aaa@8D12@

Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@6DC7@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) 4 ],      (3.12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGinaaaaaiaawUfacaGLDbaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabkdacaqGPaaaaa@77BA@

which are already proved by Toseef, et al.

Remark 2

If we replace Ϝ( τ )=τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabes8a0bGaayjkaiaawMcaaiaai2dacqaHepaDaaa@4946@ , and σ 1 = ξ 1 , ϖ 1 = η 1 , σ 2 = ξ 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGypaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaai2dacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@4C3A@  and ϖ 2 = η 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaaGypaiabeE7aOnaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@3E70@  in Theorem 3, we get the inequalities,

Ϝ( σ 1 + ϖ 1 2 , σ 2 + ϖ 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@5405@

1 ( ϖ 1 σ 1 )( ϖ 2 σ 2 ) σ 1 ϖ 1 σ 2 ϖ 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaaabaGaeqO1dy3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipakmaapedabeWcbaGaeq4Wdm3aaSbaaeaacaaIYaaabeaaaeaacqaHwpGDdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaWGKbGaeq4SdCMaamizaiab+b=a5daa@7136@

Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) 4 ,      (3.13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaaisdaaaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqGZaGaaeykaaaa@7745@

which are already proved by Dragomir in [8].

Remark 3

If we replace Ϝ( τ )= 1 τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabes8a0bGaayjkaiaawMcaaiaai2dadaWcaaqaaiaaigdaaeaacqaHepaDaaaaaa@4A11@ , and σ 1 = ξ 1 , ϖ 1 = η 1 , σ 2 = ξ 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGypaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaai2dacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@4C3A@  and ϖ 2 = η 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaaGypaiabeE7aOnaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@3E70@  in Theorem 3, we get the inequality:

Ϝ( σ 1 + ϖ 1 2 , σ 2 + ϖ 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@5405@

16 ( ϖ 1 σ 1 )( ϖ 2 σ 2 ) σ 1 ϖ 1 σ 2 ϖ 2 Ϝ( ϰ,γ )dγdϰ.     (3.14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaGaaGOnaaqaamaabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaigdaaeqaaaqaaiabeA9a2naaBaaabaGaaGymaaqabaaaniabgUIiYdGcdaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGOmaaqabaaabaGaeqO1dy3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeinaiaabMcaaaa@7A06@

Remark 4

If we replace σ 1 = ξ 1 , ϖ 1 = η 1 , σ 2 = ξ 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGypaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4TdG2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaakiaai2dacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@4C3A@  and ϖ 2 = η 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaaGypaiabeE7aOnaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@3E70@  in Theorem 3, we get the inequalities,

1 4 ( h( 1 2 ) ) 2 Ϝ( σ 1 + ϖ 1 2 , σ 2 + ϖ 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGinamaabmaabaGaamiAamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@5C07@

1 ( ϖ 1 σ 1 )( ϖ 2 σ 2 ) σ 1 ϖ 1 σ 2 ϖ 2 Ϝ( ϰ,γ )dγdϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaaabaGaeqO1dy3aaSbaaeaacaaIXaaabeaaa0Gaey4kIipakmaapedabeWcbaGaeq4Wdm3aaSbaaeaacaaIYaaabeaaaeaacqaHwpGDdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaWGKbGaeq4SdCMaamizaiab+b=a5daa@7136@

[ Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) ] ( 0 1 h( τ )dτ ) 2 ,      (3.15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aamWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaabmaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaamizaiabes8a0bGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeynaiaabMcaaaa@8579@

which are already proved by Alomari and Latif in [21].

4. Numerical examples and computational analysis

In this section, we give numerical examples and computational analysis of newly derived inequalities.

Example 2

Ϝ( ϰ,γ )= ( ϰ1 ) 2s ( γ1 ) 2s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaaI9aWaaeWaaeaacqGFWpq+cqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaam4CaaaakmaabmaabaGaeq4SdCMaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadohaaaaaaa@58DD@  is h-the convex function on [ 2,10 ]×[ 2,10 ]0,)×0,),s( 0.1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaaIYaGaaGilaiaaigdacaaIWaaacaGLBbGaayzxaaGaey41aq7aamWaaeaacaaIYaGaaGilaiaaigdacaaIWaaacaGLBbGaayzxaaGaeyOGIWSaaGimaiaaiYcacqGHEisPcaaIPaGaey41aqRaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaadohacqGHiiIZdaqadaqaaiaaicdacaaIUaGaaGymaaGaayjkaiaawMcaaaaa@5576@  then there are three cases (i) h( τ )= τ s ,(ii) h( τ )=τ,(iii) h( τ )= 1 τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGOaGaaeyAaiaabMcacaqGGaGaamiAaOWaaeWaaeaajugibiabes8a0bGccaGLOaGaayzkaaqcLbsacaaI9aGaeqiXdqNcdaahaaWcbeqaaKqzGeGaam4CaaaacaaISaGaaeikaiaabMgacaqGPbGaaeykaiaabccacaWGObGcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiaai2dacqaHepaDcaaISaGaaeikaiaabMgacaqGPbGaaeyAaiaabMcacaqGGaGaamiAaOWaaeWaaeaajugibiabes8a0bGccaGLOaGaayzkaaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacqaHepaDaaGaaGOlaaaa@61D3@

In the first case: h( τ )= τ s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypaiabes8a0naaCaaaleqabaGaam4Caaaaaaa@3F76@ , s=0.1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai2dacaaIWaGaaGOlaiaaigdaaaa@3B76@

4 s1 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCaaaleqabaGaam4CaiabgkHiTiaaigdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@65DC@

=4 s1 ( σ 1 + ϖ 1 ξ 1 + η 1 2 1 ) 2s ( σ 2 + ϖ 2 ξ 2 + η 2 2 1 ) 2s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaisdadaahaaWcbeqaaiaadohacqGHsislcaaIXaaaaOWaaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGymaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaadohaaaGcdaqadaqaaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaam4Caaaaaaa@62B0@

=4 0.11 ( 2+10 3+7 2 1 ) 0.2 ( 2+10 3+7 2 1 ) 0.2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaisdadaahaaWcbeqaaiaaicdacaaIUaGaaGymaiabgkHiTiaaigdaaaGcdaqadaqaaiaaikdacqGHRaWkcaaIXaGaaGimaiabgkHiTmaalaaabaGaaG4maiabgUcaRiaaiEdaaeaacaaIYaaaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaicdacaaIUaGaaGOmaaaakmaabmaabaGaaGOmaiabgUcaRiaaigdacaaIWaGaeyOeI0YaaSaaaeaacaaIZaGaey4kaSIaaG4naaqaaiaaikdaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGimaiaai6cacaaIYaaaaaaa@5695@

=0.5880, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaicdacaaIUaGaaGynaiaaiIdacaaI4aGaaGimaiaaiYcaaaa@3D76@ (4.1)

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=2.0352,       (4.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGOmaiaai6cacaaIWaGaaG4maiaaiwdacaaIYaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaab6cacaqGYaGaaeykaaaa@9929@

4[ Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) ( s+1 ) 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaadmaabaWaaSaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaamaabmaabaGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@73E3@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) ( s+1 ) 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaakiaawUfacaGLDbaaaaa@735E@

=16.0273. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaigdacaaI2aGaaGOlaiaaicdacaaIYaGaaG4naiaaiodacaaIUaaaaa@3E30@ (4.3)

In the second case: h( τ )=τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypaiabes8a0baa@3E51@

Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@6247@

= ( σ 1 + ϖ 1 ξ 1 + η 1 2 1 ) 2 ( σ 2 + ϖ 2 ξ 2 + η 2 2 1 ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeo8aZnaaBaaaleaacaaIYaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5D2B@

= ( 2+10 3+7 2 1 ) 2 ( 2+10 3+7 2 1 ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabmaabaGaaGOmaiabgUcaRiaaigdacaaIWaGaeyOeI0YaaSaaaeaacaaIZaGaey4kaSIaaG4naaqaaiaaikdaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGOmaiabgUcaRiaaigdacaaIWaGaeyOeI0YaaSaaaeaacaaIZaGaey4kaSIaaG4naaqaaiaaikdaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@4EE7@

=1296, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaigdacaaIYaGaaGyoaiaaiAdacaaISaaaaa@3C01@ (4.3)

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=1393.778,     (4.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGymaiaaiodacaaI5aGaaG4maiaai6cacaaI3aGaaG4naiaaiIdacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaab6cacaqG0aGaaeykaaaa@9973@

Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@6C12@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) 4 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGinaaaaaiaawUfacaGLDbaaaaa@6F0B@

=6324.0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiAdacaaIZaGaaGOmaiaaisdacaaIUaGaaGimaiaai6caaaa@3D72@ (4.5)

In the third case: h( τ )= 1 τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiabes8a0baaaaa@3F1C@

1 16 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 )=81, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaai2dacaaI4aGaaGymaiaaiYcaaaa@6787@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=1393.778. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGymaiaaiodacaaI5aGaaG4maiaai6cacaaI3aGaaG4naiaaiIdacaaIUaaaaa@92D0@

From inequalities (4.1)-(4.6), Table 1, and Graph we can conclude that inequalities of Theorem 3 are better when s0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaicdaaaa@3B29@ and worse when s1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaigdacaaIUaaaaa@3BE2@

Example 3

Ϝ( ϰ,γ )= e sϰγ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaGqbciab+b=a5laaiYcacqaHZoWzaiaawIcacaGLPaaacaaI9aGaamyzamaaCaaaleqabaGaam4Caiab+b=a5labeo7aNbaaaaa@50BE@  is h-the convex function on [ 2,10 ]×[ 2,10 ]0,)×0,),s( 0.1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaaIYaGaaGilaiaaigdacaaIWaaacaGLBbGaayzxaaGaey41aq7aamWaaeaacaaIYaGaaGilaiaaigdacaaIWaaacaGLBbGaayzxaaGaeyOGIWSaaGimaiaaiYcacqGHEisPcaaIPaGaey41aqRaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaadohacqGHiiIZdaqadaqaaiaaicdacaaIUaGaaGymaaGaayjkaiaawMcaaaaa@5576@  then there are three cases ( i )h( τ )= τ s , ( ii )h( τ )=τ, ( iii )h( τ )= 1 τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaWGPbaacaGLOaGaayzkaaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypaiabes8a0naaCaaaleqabaGaam4CaaaakiaaiYcacaqGGaWaaeWaaeaacaWGPbGaamyAaaGaayjkaiaawMcaaiaadIgadaqadaqaaiabes8a0bGaayjkaiaawMcaaiaai2dacqaHepaDcaaISaGaaeiiamaabmaabaGaamyAaiaadMgacaWGPbaacaGLOaGaayzkaaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiabes8a0baacaaIUaaaaa@5B72@

In the first case: h( τ )= τ s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypaiabes8a0naaCaaaleqabaGaam4Caaaaaaa@3F76@ , s=0.1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai2dacaaIWaGaaGOlaiaaigdaaaa@3B76@

4 s1 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaaCaaaleqabaGaam4CaiabgkHiTiaaigdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaaiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaHwpGDdaWgaaWcbaGaaGOmaaqabaGccqGHsisldaWcaaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgUcaRiabeE7aOnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@65DC@

=4 s1 × e s( σ 1 + ϖ 1 ξ 1 + η 1 2 )( σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaisdadaahaaWcbeqaaiaadohacqGHsislcaaIXaaaaOGaey41aqRaamyzamaaCaaaleqabaGaam4CamaabmaabaGaeq4Wdm3aaSbaaeaacaaIXaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaigdaaeqaaiabgkHiTmaalaaabaGaeqOVdG3aaSbaaeaacaaIXaaabeaacqGHRaWkcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeE7aOnaaBaaabaGaaGOmaaqabaaabaGaaGOmaaaaaiaawIcacaGLPaaaaaaaaa@5F12@

=4 0.11 × e 0.1( 2+10 3+7 2 )( 2+10 3+7 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaisdadaahaaWcbeqaaiaaicdacaaIUaGaaGymaiabgkHiTiaaigdaaaGccqGHxdaTcaWGLbWaaWbaaSqabeaacaaIWaGaaGOlaiaaigdadaqadaqaaiaaikdacqGHRaWkcaaIXaGaaGimaiabgkHiTmaalaaabaGaaG4maiabgUcaRiaaiEdaaeaacaaIYaaaaaGaayjkaiaawMcaamaabmaabaGaaGOmaiabgUcaRiaaigdacaaIWaGaeyOeI0YaaSaaaeaacaaIZaGaey4kaSIaaG4naaqaaiaaikdaaaaacaGLOaGaayzkaaaaaaaa@53E0@

=38.5646, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiodacaaI4aGaaGOlaiaaiwdacaaI2aGaaGinaiaaiAdacaaISaaaaa@3E3B@ (4.7)

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=269.08,     (4.8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGOmaiaaiAdacaaI5aGaaGOlaiaaicdacaaI4aGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGUaGaaeioaiaabMcaaaa@97F6@

4[ Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) ( s+1 ) 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinamaadmaabaWaaSaaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeo8aZnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=X9a0paabmaabaGaeqO1dy3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeA9a2naaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaamaabmaabaGaam4CaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@73E3@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) ( s+1 ) 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaacaWGZbGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaakiaawUfacaGLDbaaaaa@735E@

=72742. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiEdacaaIYaGaaG4naiaaisdacaaIYaGaaGOlaaaa@3CC1@ (4.9)

In the second case: h( τ )=τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypaiabes8a0baa@3E51@

Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaaaa@6247@

=4 0 × e ( σ 1 + ϖ 1 ξ 1 + η 1 2 )( σ 2 + ϖ 2 ξ 2 + η 2 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaisdadaahaaWcbeqaaiaaicdaaaGccqGHxdaTcaWGLbWaaWbaaSqabeaadaqadaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsisldaWcaaqaaiabe67a4naaBaaabaGaaGymaaqabaGaey4kaSIaeq4TdG2aaSbaaeaacaaIXaaabeaaaeaacaaIYaaaaaGaayjkaiaawMcaamaabmaabaGaeq4Wdm3aaSbaaeaacaaIYaaabeaacqGHRaWkcqaHwpGDdaWgaaqaaiaaikdaaeqaaiabgkHiTmaalaaabaGaeqOVdG3aaSbaaeaacaaIYaaabeaacqGHRaWkcqaH3oaAdaWgaaqaaiaaikdaaeqaaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaaaa@5C34@

= e ( 2+10 3+7 2 )( 2+10 3+7 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadwgadaahaaWcbeqaamaabmaabaGaaGOmaiabgUcaRiaaigdacaaIWaGaeyOeI0YaaSaaaeaacaaIZaGaey4kaSIaaG4naaqaaiaaikdaaaaacaGLOaGaayzkaaWaaeWaaeaacaaIYaGaey4kaSIaaGymaiaaicdacqGHsisldaWcaaqaaiaaiodacqGHRaWkcaaI3aaabaGaaGOmaaaaaiaawIcacaGLPaaaaaaaaa@4AD2@

=1.1524× 10 21 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaigdacaaIUaGaaGymaiaaiwdacaaIYaGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIYaGaaGymaaaakiaaiYcaaaa@42A8@ (4.10)

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=5.3422× 10 31 ,     (4.11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGynaiaai6cacaaIZaGaaGinaiaaikdacaaIYaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaiodacaaIXaaaaOGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGUaGaaeymaiaabgdacaqGPaaaaa@9DD5@

Ϝ( σ 1 , σ 2 )+Ϝ( σ 1 , ϖ 2 )+Ϝ( ϖ 1 , σ 2 )+Ϝ( ϖ 1 , ϖ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHdpWCdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGHRaWkcqWFCpa9daqadaqaaiabeA9a2naaBaaaleaacaaIXaaabeaakiaaiYcacqaHwpGDdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@6C12@

[ Ϝ( η 1 , ξ 2 )+Ϝ( η 1 , η 2 )+Ϝ( ξ 1 , ξ 2 )+Ϝ( ξ 1 , η 2 ) 4 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaamWaaeaadaWcaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqOVdG3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8h3dq=aaeWaaeaacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGinaaaaaiaawUfacaGLDbaaaaa@6F0B@

=9.9887× 10 42 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaiMdacaaIUaGaaGyoaiaaiIdacaaI4aGaaG4naiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaI0aGaaGOmaaaakiaai6caaaa@42C9@ (4.12)

In the third case: h( τ )= 1 τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabmaabaGaeqiXdqhacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiabes8a0baaaaa@3F1C@

1 16 Ϝ( σ 1 + ϖ 1 ξ 1 + η 1 2 , σ 2 + ϖ 2 ξ 2 + η 2 2 )=7.2025× 10 19 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGymaiaaiAdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFCpa9daqadaqaaiabeo8aZnaaBaaaleaacaaIXaaabeaakiabgUcaRiabeA9a2naaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaaaacaaISaGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqO1dy3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaai2dacaaI3aGaaGOlaiaaikdacaaIWaGaaGOmaiaaiwdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaaGymaiaaiMdaaaGccaaISaaaaa@6FB5@

1 ( η 1 ξ 1 )( ξ 2 η 2 ) σ 1 + ϖ 1 η 1 σ 1 + ϖ 1 ξ 1 σ 2 + ϖ 2 ξ 2 σ 2 + ϖ 2 η 2 Ϝ( ϰ,γ )dγdϰ=5.3422× 10 31 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWaaeWaaeaacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH+oaEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaadaqadaqaaiabe67a4naaBaaaleaacaaIYaaabeaakiabgkHiTiabeE7aOnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaadaWdXaqabSqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH3oaAdaWgaaqaaiaaigdaaeqaaaqaaiabeo8aZnaaBaaabaGaaGymaaqabaGaey4kaSIaeqO1dy3aaSbaaeaacaaIXaaabeaacqGHsislcqaH+oaEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOWaa8qmaeqaleaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqOVdG3aaSbaaeaacaaIYaaabeaaaeaacqaHdpWCdaWgaaqaaiaaikdaaeqaaiabgUcaRiabeA9a2naaBaaabaGaaGOmaaqabaGaeyOeI0Iaeq4TdG2aaSbaaeaacaaIYaaabeaaa0Gaey4kIipatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h3dq=aaeWaaeaaiuGacqGFWpq+caaISaGaeq4SdCgacaGLOaGaayzkaaGaamizaiabeo7aNjaadsgacqGFWpq+caaI9aGaaGynaiaai6cacaaIZaGaaGinaiaaikdacaaIYaGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaiodacaaIXaaaaOGaaGOlaaaa@9681@

From inequalities (4.17)-(4.12), we can conclude that inequalities of Theorem 3 are better when s0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaicdaaaa@3B29@ and worse when s1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaigdacaaIUaaaaa@3BE2@

Remark 5

Clearly, in Example 2, from Table 1 and Figure 1 our newly established inequalities give better results when s0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaicdacaaIUaaaaa@3BE1@  

Remark 6

Clearly, in Example 3, from Table 2 and Figure 2our newly established inequalities give better results when s0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgkziUkaaicdacaaIUaaaaa@3BE1@  

5. Applications

Hermite-Hadamard–Mercer inequality has several applications in mathematical analysis and optimization. Here are some potential areas of application:

1. Mathematical analysis

Hermite-Hadamard–Mercer inequality provides tighter bounds and more precise estimates, enhancing theoretical understanding and practical applications. General convex functions offer insights into broader applications where traditional convexity concepts are insufficient.

2. Optimization

Improved inequalities can enhance the performance and accuracy of optimization algorithms, especially those that rely on convexity assumptions. In operations research, refined inequalities can lead to more efficient solutions for resource allocation problems by providing better bounds and estimates.

3. Computational analysis

Computational analysis of these inequalities can help in developing numerical methods that are more efficient and accurate. Refined inequalities can improve the fidelity of simulations and models that involve convex functions or require precise bounds for their operations.

4. Economics and finance

In financial mathematics, tighter inequalities can improve risk assessments and pricing models by providing more accurate estimates. Enhanced convex function analysis can refine economic models, leading to better predictions and insights.

5. Engineering

In control theory, refined inequalities can lead to more precise control algorithms, improving system stability and performance. Better bounds and estimates can improve signal processing techniques, leading to clearer and more accurate results.

6. Conclusion

In this article, we demonstrated the Jensen-Mercer inequality for coordinated h-convex functions and introduced the novel Hermite–Hadamard-Mercer type inequalities tailored for coordinated h-convex functions, leveraging a newly discovered inequality. We provided numerical examples and conducted computational analyses of the derived inequalities, showcasing their superior estimation capabilities compared to previously established results. This work significantly contributes to the evolution of mathematical theory and its real-world applications by effectively connecting theoretical concepts with practical problem-solving methodologies. It represents a fresh trajectory in the realm of inequalities, offering valuable insights for researchers immersed in this domain.

Authors contributions

Conceptualization, Methodology, Validation, Investigation, Writing-original Draft preparation: All these were done by M. Toseef. Writing-review and editing, M. Toseef, A. Mateen, H. Budak, A. Kashuri, Visualization: M. Toseef, A. Mateen, H. Budak, A. Kashuri, Supervision: Z. Zhang, Project administration: Z. Zhang and H. Budak. All authors have read and agreed to the final version of the manuscript.

  1. O'Connor JJ, Robertson EF. Jacques Hadamard (1865-1963). MacTutor History of Mathematics Archive. University of St Andrews. Last Update October 2003. https://mathshistory.st-andrews.ac.uk/Biographies/Hadamard/
  2. Mandelbrojt S, Schwartz L. Jacques Hadamard (1865-1963). Bull Am Math Soc. 1965;71(1):107-129.
  3. Breckner WW. Continuity statements for a class of generalized convex functions in topological linear spaces. Publications of the Mathematical Institute (Belgrade). 1978;(23):13-20.
  4. Hudzik H, Maligranda L. Some remarks on s-convex functions. Aequationes Mathematicae. 1994;48(1):100-111.
  5. Pycia M. A direct proof of the s-Hölder continuity of Breckner s-convex functions. Aequationes Mathematicae. 2001;61(1-2):128-130.
  6. Dragomir SS, Fitzpatrick S. The Hadamard's Inequality for s-convex functions in the second sense. Demonstratio Mathematica. 1999;32(4):687-696.
  7. Varošanec S. On h-Convexity. Journal of Mathematical Analysis and Applications. 2007;326:303-311.
  8. Sarikaya MZ, Saglam A, Yildrim H. On some Hadamard type inequalities for h-convex functions. Journal of Mathematical Inequalities. 2008;2(3):335-341.
  9. Dragomir SS. On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics. 2001;5(4):775-788.
  10. Dragomir SS, Pearce C. Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University; 2000.
  11. Alomari M, Darus M. Co-ordinated -convex function in the first sense with some Hadamard-type inequalities. International Journal of Contemporary Mathematical Sciences. 2008;3(32):1557-1567.
  12. Özdemir ME, Set E, Sarikaya MZ. New some Hadamard's type inequalities for co-ordinated m-convex and (α,m)-convex functions. Hacettepe Journal of Mathematics and Statistics. 2011;40(2):219-229.
  13. Sarikaya MZ, Set E, Özdemir ME, Dragomir SS. New some Hadamard's type inequalities for co-ordinated convex functions. Tamsui Oxford Journal of Information and Mathematical Sciences. 2012;28(2):137-152.
  14. Alomari M, Darus M. On the Hadamard's inequality for log-convex functions on the coordinates. Journal of Inequalities and Applications. 2009;2009(13):283147. doi:10.1155/2009/283147.
  15. Butt SI, Aftab MN, Seol Y. Symmetric Quantum Inequalities on Finite Rectangular Plane. Mathematics. 2024;12(10):1517. doi:10.3390/math12101517.
  16. Butt SI, Kashuri A, Nadeem M, Aslam A, Gao W. Approximately two-dimensional harmonic -convex functions and related integral inequalities. Journal of Inequalities and Applications. 2020;2020(1):230. doi:10.1186/s13660-020-02348-w.
  17. Song YQ, Butt SI, Kashuri A, Nasir J, Nadeem M. New fractional integral inequalities pertaining 2D approximately coordinate (p1,h1)-(p2,h2) -convex functions. Journal of Inequalities and Applications. 2020;2020(1):230. doi:10.1186/s13660-020-02348-w.
  18. Butt SI, Kashuri A, Nadeem M. Generalized integral inequalities for convex functions on the coordinates. Tbilisi Mathematical Journal. 2021;14(3):81-94.
  19. Butt SI, Javed I, Agarwal P, Nieto JJ. Newton-Simpson-type inequalities via majorization. Journal of Inequalities and Applications. 2023;2023(1):16. doi:10.1186/s13660-022-0611-5.
  20. Latif A, Alomari M. Hadamard-type inequalities for product two convex functions on the coordinates. International Mathematics Forum. 2009;4(47):2327-2338.
  21. Alomari M, Darus M. On the Hadamard's inequality for -convex function of 2-variables on the coordinates. International Journal of Mathematical Analysis. 2008;2(13):629-638.
  22. Latif MA, Alomari MW. On Hadmard-type inequalities for h-convex functions on the co-ordinates. International Journal of Mathematical Analysis. 2009;3(33):1645-1656.
  23. Mercer AM. A variant of Jensen Inequality. Journal of Inequalities in Pure and Applied Mathematics. 2003;6(4):73.
  24. Matkovic A, Pečarić J, Perić I. A variant of Jensens inequality of Mercer type for operators with applications. Linear Algebra and Applications. 2006;418(2-3):551-564.
  25. Niezgoda M. A generalization of Mercer's result on convex functions. Nonlinear Analysis. 2009;71:277.
  26. Kian MM, Moslehian MS. Refinements of the operator Jensen-Mercer inequality. Electronic Journal of Linear Algebra. 2013;26:742-753.
  27. Xu P, Butt SI, Yousaf S, Aslam A, Zia TJ. Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel. Alexandria Engineering Journal. 2022;61:4837-4846.
  28. Moslehian MS. Matrix Hermite-Hadamard type inequalities. Houston Journal of Mathematics. 2013;39(1):177-189.
  29. Dragomir SS. Some refinements of Jensen's inequality. Journal of Mathematical Analysis and Applications. 1992;168(2):518-522.
  30. Dragomir SS. On Hadamard's inequality for the convex mappings defined on a ball in the space and applications. Mathematical Inequalities and Applications. 2000;3(2):177-187.
  31. Dragomir SS. A refinement of Jensen's inequality with applications for f-divergence measure. Taiwanese Journal of Mathematics. 2010;14(1):153-164.
  32. Bakula MK, Pečarić J. On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics. 2006;10(5):1271-1292.
  33. Dwilewicz RJ. A short history of Convexity. Differential Geometry–Dynamical Systems. 2009.
  34. Alomari M. Mercer's Inequality for h-convex functions. Turkish Journal of Inequalities. 2018;2(1):38-41.
  35. Stromer. On the Product of a primitive root and a quadratic non-residue. Mathematica Scandinavica. 1933;1:63-74.
 

Help ?