New Quantum Estimates for Midpoint and Trapezoid Type Inequalities Through (α,m)-Convex Functions with Applications
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

New Quantum Estimates for Midpoint and Trapezoid Type Inequalities Through (α,m)-Convex Functions with Applications

Ghazala Gulshan1, Muhammad Aamir Ali2, Hüseyin Budak3* and Rashida Hussain1

1Department of Mathematics, Faculty of Science, Mirpur University of Science and Technology (MUST), Mirpur-10250(AJK), Pakistan
2Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China
3Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
*Corresponding authors: Hüseyin Budak, Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, E-mail: hsyn.budak@gmail.com
Received: 18 July, 2024 | Accepted: 03 August, 2024 | Published: 06 August, 2024
Keywords: Midpoint inequalities; Trapezoid Inequalities; (α, m)-convex function; Quantum calculus

Cite this as

Gulshan G, Ali MA, Budak H, Hussain R. New Quantum Estimates for Midpoint and Trapezoid Type Inequalities Through (α,m)-Convex Functions with Applications. Ann Math Phys. 2024;7(2):222-231. Available from: 10.17352/amp.000126

Copyright Licence

© 2024 Gulshan G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The main goal of current investigation is to present two new q-integral identities for midpoint and trapezoid type inequalities. Then using these identities, we develop several new quantum estimates for midpoint and trapezoid type inequalities via (α, m)-convexity. Some special cases of these new inequalities can be turned into quantum midpoint and quantum trapezoid type inequalities for convex functions, classical midpoint and trapezoid type inequalities for convex functions without having to prove each one separately. Finally, we discuss how the special means can be used to address newly discovered inequalities.

2010 Mathematics Subject Classification. 26D10, 26D15, 26B25.

Introduction

It is well known that modern investigation, directly or indirectly, involves the applications of convexity. Due to its use and significant importance, the concept of convex sets and hence convex functions is largely generalized in various directions. The concept of convexity and its variant forms have played a fundamental role in the development of different fields. Convex functions are powerful tools for proving a large class of inequalities. Today the study of convex functions evolved into a broader theory of functions including quasi-convex functions [1-3], log convex functions [4], co-ordinated convex functions [5,6], harmonically convex functions [7], GA-convex functions [8,9], (α, m) -convex functions [10]. Convexity naturally gives rise to inequalities, Hermite-Hadamard inequalities is the fisrst consequence of convex functions. A function F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@ , where MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@ is an interval in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@4242@ is called convex, if it satisfies the inequality

F(wr+(1w)s)wF(r)+(1w)F(s) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiIcacqWFWa=DcqWFRaVCcqGHRaWkcaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFSa=CcaaIPaGaeyizImQae8hmWFNae8xbWBKaaGikaiab=Tc8YjaaiMcacqGHRaWkcaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFfaVrcaaIOaGae8hlWpNaaGykaaaa@6609@

where r,s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjaaiYcacqWFSa=CcqGHiiIZcqWFressaaa@49AB@ and w0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83jabgIGiolaaicdacaaISaGaaGymaiaai2faaaa@48FD@ .

A class of ( α,m ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacqaHXoqycaaISaGaamyBaaGaayjkaiaawMcaaaaa@3C5A@ -convex functions was introduced by Mihesan and stated as:

Definition 1 [10] A function F:[ 0, y 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdadaqcsaqaaiaaicdacaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaayzkaaGaeyOKH46efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFDeIuaaa@57CA@ is called (a, m)-convex, if the inequality

F( wr+m( 1w )s ) w α F( r )+m( 1 w α )F( s ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaGae8hmWFNae83kWlNaey4kaSIaamyBamaabmaabaGaaGymaiabgkHiTiab=bd83bGaayjkaiaawMcaaiab=Xc8ZbGaayjkaiaawMcaaiabgsMiJkab=bd83naaCaaaleqabaGaeqySdegaaOGae8xbWB0aaeWaaeaacqWFRaVCaiaawIcacaGLPaaacqGHRaWkcaWGTbWaaeWaaeaacaaIXaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqyaaaakiaawIcacaGLPaaacqWFfaVrdaqadaqaaiab=Xc8ZbGaayjkaiaawMcaaaaa@6C4D@

holds for all r,s[ 0, y 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjaaiYcacqWFSa=CcqGHiiIZdaqcsaqaaiaaicdacaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaayzkaaaaaa@4F00@ , w[ 0,1 ],α[ 0,1 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83jabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGilaiabeg7aHjabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaaaaa@51FE@ and m[ 0,1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgIGiopaadmaabaGaaGimaiaaiYcacaaIXaaacaGLBbGaayzxaaGaaGOlaaaa@3ED5@ .

It is also well known that F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gbaa@440B@ is convex if and only if it satisfies the Hermite-Hadamard's inequality, stated below:

F( y 1 + y 2 2 ) 1 y 2 y 1 y 1 y 2 F(r)dr F( y 1 )+F( y 2 ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaWaaSaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiabgsMiJoaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gjaaiIcacqWFRaVCcaaIPaGaamizaiab=Tc8YjabgsMiJoaalaaabaGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacqGHRaWkcqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaqaaiaaikdaaaaaaa@7724@

where F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@ is a convex function and y 1 , y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcqWFressaaa@4BA8@ with y 1 < y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYdacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaaaa@492A@ Convexity is mixed with other mathematical concepts like; optimization [11], time scale [12,13], quantum and post quantum calculus [14].

On the other hand, several works in the field of q-analysis are being carried out, beginning with Euler, in order to achieve mastery in the mathematics that drives quantum computing. Q-calculus is the connection between physics and mathematics. It has a wide range of applications in many fields, e.g., mathematics, including number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions, and other disciplines, as well as mechanics, theory of relativity, and quantum theory [15,16]. q-calculus also has many applications in quantum information theory, which is an interdisciplinary area that surrounds computer science, information theory, philosophy, and cryptography, among other areas [17, 18]. Euler is the inventor of this significant branch of mathematics. Newton used the q -parameter in his work on infinite series. The q -calculus that is known without limits calculus was presented by Jackson [19] in a systematic manner. In 1966, Al-Salam [20] introduced a q -analogue of the q -fractional integrals and q -Riemann-Liouville fractional. Since then, realted research has been increasing gently. In particular, in 2013, Tariboon and Ntouyas introduced the left quantum difference operator and left quantum integral in [21]. In 2020, Bermudo et al. introduced the notion of right quantum derivative and right quantum integral in [22].

Many integrals have also been investigated using quantum and post quantum calculus for different types of functions. For example, in [14,22-30], the authors proved Hermite-Hadamard integral inequalities and their left-right estimates for convex and co-ordinated convex functions by using the quantum derivative and integrals. In [31], the generalized version of q-integral inequalities was presented by Noor et al. In [32] Nwaeze et al. proved certain partametrized quantum integral inequalities for generalized quasi convex functions. Khan et al.proved Hermite-Hadamard inequality using the green function in [33]. For convex and co-ordinated convex functions, Budak et al. [34], Ali et al. [35,36] and Vivas-Cortez et al. [37] developed new quantum Simpson's and Newton's type inequalities.For quantum Ostrowski's type inequalities for convex and co-ordinated convex functions, please refer to [38-40].

Inspired by the ongoing studies, we derive some new inequalities of Midpoint and Trapezoid type inequalities for (α,m) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeg7aHjaaiYcacaWGTbGaaGykaaaa@3C36@ -convex functions by utilizing quantum calculus. The fundamental benefit of these inequalities can be turned into quantum Midpoint and trapezoid type inequalities for convex functions [14,41], classical Midpoint for convex functions [42] and the classical Trapezoid type inequalities for convex functions [43] without having to prove each one separately.

This paper is summarized as follows: Section 2 provides a brief overview of the fundamentals of q-calculus as well as other related studies in this field. In Section 3, we establish two pivotal identities that play a major role in establishing the main outcomes of this paper. The Midpoint and Trapezoid type inequalities for q-differentiable functions via (a, m) -convexity are presented in section 4 and section 5. The special means are described in section 6. The connection between the findings reported here and similar findings in the literature are also taken into account. Section 7 concludes with some suggestions for future research.

Preliminaries and definitions of q-calculus

 In this section, we first present the definitions and some properties of quantum integrals. We also mention some well known inequalities for quantum integrals. Throughout this paper, let  0<q<1 be a constant.

The q-number or q -analogue of n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xfH4eaaa@44AD@ is given by

n ] q = 1 q n 1q =1+q+ q 2 +...+ q n1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2fadaWgaaWcbaGaamyCaaqabaGccaaI9aWaaSaaaeaacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaaaaaOqaaiaaigdacqGHsislcaWGXbaaaiaai2dacaaIXaGaey4kaSIaamyCaiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIUaGaaGOlaiaai6cacqGHRaWkcaWGXbWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaai6caaaa@505E@

Jackson derived the q -Jackson integral in [44] from 0 to y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaaaaa@4553@  as follows:

0 y 2 F(r) d q r=(1q) y 2 n=0 q n F( y 2 q n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCcaaI9aGaaGikaiaaigdacqGHsislcaWGXbGaaGykaiab=jd85naaBaaaleaacaaIYaaabeaakmaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGccaWGXbWaaWbaaSqabeaacaWGUbaaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaadghadaahaaWcbeqaaiaad6gaaaGccaaIPaaaaa@6A19@

provided the sum converges absolutely.

The q Jackson integral in a generic interval [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ was given by in [19] and defined as follows:

y 1 y 2 F(r) d q r= 0 y 2 F(r) d q r 0 y 1 F(r) d q r. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaaGypamaapedabeWcbaGaaGimaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCcqGHsisldaWdXaqabSqaaiaaicdaaeaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaaGOlaaaa@74D3@

Definition 2 [21] Let F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@  be a continuous function and let r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjabgIGiolab=frijbaa@46E1@ . Then the q y 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaaaa@4669@ derivative on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@ of F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gbaa@440B@  at r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8Ybaa@445D@ is defined as

y 1 D q F(r)= F(r)F(qr+(1q) y 1 ) (1q)(r y 1 ) r y 1 ,      (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=Tc8YjaaiMcacaaI9aWaaSaaaeaacqWFfaVrcaaIOaGae83kWlNaaGykaiabgkHiTiab=va8gjaaiIcacaWGXbGae83kWlNaey4kaSIaaGikaiaaigdacqGHsislcaWGXbGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaaIOaGaaGymaiabgkHiTiaadghacaaIPaGaaGikaiab=Tc8YjabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaGaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7cqWFRaVCcqGHGjsUcqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGPaaaaa@8744@

y 1 D q F( y 1 )=li m r y 1 y 1 D q F(r). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI9aGaamiBaiaadMgacaWGTbWaaSbaaSqaaiab=Tc8YjabgkziUkab=jd85naaBaaabaGaaGymaaqabaaabeaakiaayIW7caaMi8+aaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaai6caaaa@66A9@

Definition 3 If y 1 =0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@46DD@  in (1), then we get classical q -derivative of F(r) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiIcacqWFRaVCcaaIPaaaaa@4782@  at r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjabgIGiolab=frijbaa@46E1@ , given by

0 D q F(r)= D q F(r)= F(r)F(qr) (1q)r . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaiaaicdaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaai2dacaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=Tc8YjaaiMcacaaI9aWaaSaaaeaacqWFfaVrcaaIOaGae83kWlNaaGykaiabgkHiTiab=va8gjaaiIcacaWGXbGae83kWlNaaGykaaqaaiaaiIcacaaIXaGaeyOeI0IaamyCaiaaiMcacqWFRaVCaaGaaGOlaaaa@664F@

Definition 4 [22] Let F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@  be a continuous function and let r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjabgIGiolab=frijbaa@46E1@ . Then the q y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGOmaaqabaaaaaaa@466B@  derivative on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@  of F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gbaa@440B@  at r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8Ybaa@445D@  is defined as

y 2 D q F(r)= F(r)F(qr+(1q) y 2 ) (1q)(r y 2 ) r y 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIYaaabeaaaaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=Tc8YjaaiMcacaaI9aWaaSaaaeaacqWFfaVrcaaIOaGae83kWlNaaGykaiabgkHiTiab=va8gjaaiIcacaWGXbGae83kWlNaey4kaSIaaGikaiaaigdacqGHsislcaWGXbGaaGykaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcaaeaacaaIOaGaaGymaiabgkHiTiaadghacaaIPaGaaGikaiab=Tc8YjabgkHiTiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcaaaGaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7cqWFRaVCcqGHGjsUcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@816C@

y 2 D q F( y 2 )=li m r y 2 y 2 D q F(r). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIYaaabeaaaaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaamiBaiaadMgacaWGTbWaaSbaaSqaaiab=Tc8YjabgkziUkab=jd85naaBaaabaGaaGOmaaqabaaabeaakiaayIW7daahaaWcbeqaaiab=jd85naaBaaabaGaaGOmaaqabaaaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFRaVCcaaIPaGaaGOlaiaayIW7aaa@66AF@

Definition 5 [21] Let F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@  be a continuous function. Then the q y 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaaaa@4669@ -integral on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@ is defined as

y 1 r F (w) y 1 d q w=(1q)(r y 1 ) n=0 q n F( q n r+(1 q n ) y 1 )      (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFRaVCa0Gaey4kIipakiab=va8gjaaiIcacqWFWa=DcaaIPaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaI9aGaaGikaiaaigdacqGHsislcaWGXbGaaGykaiaaiIcacqWFRaVCcqGHsislcqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadghadaahaaWcbeqaaiaad6gaaaGccqWFfaVrcaaIOaGaamyCamaaCaaaleqabaGaamOBaaaakiab=Tc8YjabgUcaRiaaiIcacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaaaakiaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaaaa@8117@

for r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjabgIGiolab=frijbaa@46E1@ . If y 1 =0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@46DD@  in (2), then

0 r F (w) 0 d q w= 0 r F(w) d q w, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaapedabeWcbaGaaGimaaqaaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGilaaaa@619C@

where 0 r F(w) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@50BD@  is familiar q -definite integral on [0,r] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaicdacaaISaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8Yjaai2faaaa@4799@  defined by the expression

0 r F (w) 0 d q w= 0 r F(w) d q w=(1q)r n=0 q n F( q n r). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaapedabeWcbaGaaGimaaqaaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypaiaaiIcacaaIXaGaeyOeI0IaamyCaiaaiMcacqWFRaVCdaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaamyCamaaCaaaleqabaGaamOBaaaakiab=va8gjaaiIcacaWGXbWaaWbaaSqabeaacaWGUbaaaOGae83kWlNaaGykaiaai6caaaa@7823@

Moreover, if c( y 1 ,r) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=Tc8YjaaiMcaaaa@4BF5@ , then the q -integral on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@  is defined as

c r F (w) y 1 d q w= y 1 r F (w) y 1 d q w y 1 c F (w) y 1 d q w. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaWGJbaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaWgaaWcbaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWdXaqabSqaaiab=jd85naaBaaabaGaaGymaaqabaaabaGae83kWlhaniabgUIiYdGccqWFfaVrcaaIOaGae8hmWFNaaGykamaaBaaaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaeyOeI0Yaa8qmaeqaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiaadogaa0Gaey4kIipakiab=va8gjaaiIcacqWFWa=DcaaIPaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIUaaaaa@7D2B@

Definition 6 [22] Let F: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacqWFresscqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5275@  be a continuous function. Then the q y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGOmaaqabaaaaaaa@466B@ -integral on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@  is defined as

r y 2 F (w) y 2 d q w=(1q)( y 2 r) n=0 q n F( q n r+(1 q n ) y 2 )      (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae83kWlhabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gjaaiIcacqWFWa=DcaaIPaWaaWbaaSqabeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaI9aGaaGikaiaaigdacqGHsislcaWGXbGaaGykaiaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqWFRaVCcaaIPaWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadghadaahaaWcbeqaaiaad6gaaaGccqWFfaVrcaaIOaGaamyCamaaCaaaleqabaGaamOBaaaakiab=Tc8YjabgUcaRiaaiIcacaaIXaGaeyOeI0IaamyCamaaCaaaleqabaGaamOBaaaakiaaiMcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@811D@

for r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YjabgIGiolab=frijbaa@46E1@ . If y 2 =1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2dacaaIXaaaaa@46DF@ in (3), then

r 1 F (w) 1 d q w= r 1 F(w) d q w, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae83kWlhabaGaaGymaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaahaaWcbeqaaiaaigdaaaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaapedabeWcbaGae83kWlhabaGaaGymaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGilaaaa@61A0@

where 0 r F(w) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@50BD@ is familiar q -definite integral on [0,r] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaicdacaaISaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8Yjaai2faaaa@4799@ defined by the expression

0 r F (w) 0 d q w= 0 r F(w) d q w=(1q)r n=0 q n F( q n r). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaapedabeWcbaGaaGimaaqaaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypaiaaiIcacaaIXaGaeyOeI0IaamyCaiaaiMcacqWFRaVCdaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaamyCamaaCaaaleqabaGaamOBaaaakiab=va8gjaaiIcacaWGXbWaaWbaaSqabeaacaWGUbaaaOGae83kWlNaaGykaiaai6caaaa@7823@

Moreover, if c( y 1 ,r) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiolaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=Tc8YjaaiMcaaaa@4BF5@ , then the q -integral on MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijbaa@434B@ is defined as

c r F (w) y 1 d q w= y 1 r F (w) y 1 d q w y 1 c F (w) y 1 d q w. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaWGJbaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Tc8YbqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaaiMcadaWgaaWcbaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWdXaqabSqaaiab=jd85naaBaaabaGaaGymaaqabaaabaGae83kWlhaniabgUIiYdGccqWFfaVrcaaIOaGae8hmWFNaaGykamaaBaaaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaeyOeI0Yaa8qmaeqaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiaadogaa0Gaey4kIipakiab=va8gjaaiIcacqWFWa=DcaaIPaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIUaaaaa@7D2B@

n [14], Alp et al. proved the corresponding Hermite-Hadamard inequalities for convex functions by using q y 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaaaa@4669@ -integrals, as follows:

Theorem 1  [14] If F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdadaWadaqaaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A40@  be a convex differentiable function on [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaaaa@4B16@ and 0<q<1. Then, q y 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBaaaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaaaa@4669@ -Hermite-Hadamard inequalities

F( q y 1 + y 2 [ 2 ] q ) 1 y 2 y 1 y 1 y 2 F( w ) y 1 d q w qF( y 1 )+F( y 2 ) [ 2 ] q .       (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaWaaSaaaeaacaWGXbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgsMiJoaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXbqabSqaaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gnaabmaabaGae8hmWFhacaGLOaGaayzkaaqbaeaaaeqaaaqaamaaBaaaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaiabgsMiJoaalaaabaGaamyCaiab=va8gnaabmaabaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8xbWB0aaeWaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@8BAE@

Bermudo et al. proved the corresponding Hermite-Hadamard inequalities for convex functions by using q y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGOmaaqabaaaaaaa@466B@ - integrals, as follows:

Theorem 2  [22] If F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdadaWadaqaaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A40@  be a convex differentiable function on [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaaaa@4B16@  and 0<q<1. Then, q y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCaaaleqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGOmaaqabaaaaaaa@466B@ -Hermite-Hadamard inequalities

F( y 1 +q y 2 [ 2 ] q ) 1 y 2 y 1 y 1 y 2 F( w ) y 2 d q w F( y 1 )+qF( y 2 ) [ 2 ] q .     (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaWaaSaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGXbGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgsMiJoaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXbqabSqaaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gnaabmaabaGae8hmWFhacaGLOaGaayzkaaqbaeaaaeqaaaqaamaaCaaaleqabaGae8NmWN3aaSbaaeaacaaIYaaabeaaaaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaiabgsMiJoaalaaabaGae8xbWB0aaeWaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGHRaWkcaWGXbGae8xbWB0aaeWaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGPaaaaa@8A6B@

From Theorem 1 and Theorem 2, one can write the following inequalities:

Corollary 1 [22] for any convex function F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdadaWadaqaaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A40@  and 0<q<1, we have

F( q y 1 + y 2 [ 2 ] q )+F( y 1 +q y 2 [ 2 ] q ) 1 y 2 y 1 { y 1 y 2 F( r ) y 1 d q r + y 1 y 2 F( r ) y 2 d q r }F( y 1 )+F( y 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaWaaSaaaeaacaWGXbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiab=va8gnaabmaabaWaaSaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGXbGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgsMiJoaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaGadaqaamaapehabeWcbaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWB0aaeWaaeaacqWFRaVCaiaawIcacaGLPaaafaqaaaqabaaabaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaaGaey4kaSYaa8qCaeqaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrdaqadaqaaiab=Tc8YbGaayjkaiaawMcaauaabaaabeaaaeaadaahaaWcbeqaaiab=jd85naaBaaabaGaaGOmaaqabaaaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbaaaiaawUhacaGL9baacqGHKjYOcqWFfaVrdaqadaqaaiab=jd85naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiab=va8gnaabmaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@A7CE@

and

F( y 1 + y 2 2 ) 1 2( y 2 y 1 ) { y 1 y 2 F( r ) y 1 d q r + y 1 y 2 F( r ) y 2 d q r } F( y 1 )+F( y 2 ) 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaabmaabaWaaSaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiabgsMiJoaalaaabaGaaGymaaqaaiaaikdadaqadaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaaaadaGadaqaamaapehabeWcbaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWB0aaeWaaeaacqWFRaVCaiaawIcacaGLPaaafaqaaaqabaaabaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaaGaey4kaSYaa8qCaeqaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrdaqadaqaaiab=Tc8YbGaayjkaiaawMcaauaabaaabeaaaeaadaahaaWcbeqaaiab=jd85naaBaaabaGaaGOmaaqabaaaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbaaaiaawUhacaGL9baacqGHKjYOdaWcaaqaaiab=va8gnaabmaabaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaGaey4kaSIae8xbWB0aaeWaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaeaacaaIYaaaaiaai6caaaa@9773@

Theorem 3 If F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacaaIBbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2facqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A1A@  is a continious function and z y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4C8E@ , then the following identities hold:

(i) y 1 D q y 1 z F (r) y 1 d q r=F(z); (ii) c z F (r) y 1 d q r=F(z)F(c)forc( y 1 ,z). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaaqaaaqaaiaaiIcacaWGPbGaaGykaiaayIW7caaMi8+aaSbaaSqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOWaa8qmaeqaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiaadQhaa0Gaey4kIipakiab=va8gjaaiIcacqWFRaVCcaaIPaWaaSbaaSqaaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCcaaI9aGae8xbWBKaaGikaiaadQhacaaIPaGaaG4oaaqaaaqaaiaaiIcacaWGPbGaamyAaiaaiMcadaWdXaqabSqaaiaadogaaeaacaWG6baaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaaGypaiab=va8gjaaiIcacaWG6bGaaGykaiabgkHiTiab=va8gjaaiIcacaWGJbGaaGykaiaayIW7caaMi8UaaeOzaiaab+gacaqGYbGaaGjcVlaayIW7caaMi8Uaam4yaiabgIGiolaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGaamOEaiaaiMcacaaIUaaaaaaa@972A@

Lemma 1  [45]For continious functions F,g:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiYcacaWGNbGaaGOoaiaaiUfacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaiabgkziUorr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4xhHifaaa@5BBC@ , the following equality true:

0 c g (w) y 1 D q F(w y 2 +(1w) y 1 d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaGaam4yaaqdcqGHRiI8aOGaam4zaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWFNaaGykamaaBaaaleaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=Daaa@64A2@

= g(w)F(w y 2 +(1w) y 1 y 2 y 1 | 0 c 1 y 2 y 1 0 c D q g(w)F(qw y 2 +(1qw) y 1 ) d q w. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaeiaabaWaaSaaaeaacaWGNbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DcaaIPaGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaaaOqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaam4yaaaakiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaaicdaaeaacaWGJbaaniabgUIiYdGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaam4zaiaaiIcacqWFWa=DcaaIPaGae8xbWBKaaGikaiaadghacqWFWa=DcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIOaGaaGymaiabgkHiTiaadghacqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIUaaaaa@8E0E@

Key Identities

In this section, we establish two quantum integral identities using the integration by parts method for quantum integrals to obtain the main outcomes.

Lemma 2  For a q-differentiable function F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacaaIBbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2facqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A1A@  with m y 1 D q F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gbaa@4A24@ is continuous and integrable on [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , the following identity holds:

q( y 2 m y 1 ) [ 0 1 [ 2 ] q w m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGae8hmWF3aaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaay5waaaaaa@73E8@

+ 1 [ 2 ] q 1 (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWFNaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCaaaacaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayzxaaaaaa@6E84@

=F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r.      (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrdaqadaqaamaalaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8Yjaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabMcaaaa@7A27@

Proof. From fundamental properties of quantum integrals, we have

[ 0 1 [ 2 ] q w m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaeaadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGccqWFWa=DdaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLBbaaaaa@698B@

+ 1 [ 2 ] q 1 (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWFNaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCaaaacaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayzxaaaaaa@6E84@

= [ 0 1 [ 2 ] q w m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaadeaabaWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaOGae8hmWF3aaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaay5waaaaaa@6A52@

+ 0 1 (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DcqGHsisldaWcaaqaaiaaigdaaeaacaWGXbaaaiaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@69B0@

0 1 [ 2 ] q (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHsisldaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWFNaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCaaaacaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayzxaaaaaa@6E8E@

= 1 + 2 3 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFressdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWFressdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqWFressdaWgaaWcbaGaaG4maaqabaGccaaIUaaaaa@4B6F@

Using the Lemma 1, we have

1 = 0 1 [ 2 ] q w m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijnaaBaaaleaacaaIXaaabeaakiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiab=bd83naaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFWa=DcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=Daaa@6B48@

= w F(w y 2 +m(1w) y 1 y 2 m y 1 | 0 1 [ 2 ] q 1 y 2 m y 1 0 1 [ 2 ] q F(wq y 2 +m(1wq) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaeiaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83naalaaabaGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaaakeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaaaaOGaayjcSdWaa0baaSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaaakmaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaadghacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaWGXbGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@8FBB@

= 1 [ 2 ] q ( y 2 m y 1 ) F( y 2 +qm y 1 [ 2 ] q ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaaaa@613E@

1 ( y 2 m y 1 ) 0 1 [ 2 ] q F(wq y 2 +m(1wq) y 1 ) d q w.      (7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiab=va8gjaaiIcacqWFWa=DcaWGXbGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaamyCaiaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4naiaabMcaaaa@7401@

Similarly, we have

2 = 0 1 (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijnaaBaaaleaacaaIYaaabeaakiaai2dadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaIOaGae8hmWFNaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCaaaacaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83baa@6B87@

= q1 q( y 2 m y 1 ) F( y 2 )+ 1 q( y 2 m y 1 ) F(m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiabgkHiTiaaigdaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaadghacaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaGae8xbWBKaaGikaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaa@6986@

1 y 2 m y 1 0 1 F(wq y 2 +m(1wq) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=bd83jaadghacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaWGXbGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@682C@

= q1 q( y 2 m y 1 ) F( y 2 )+ 1 q( y 2 m y 1 ) F(m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiabgkHiTiaaigdaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaadghacaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaGae8xbWBKaaGikaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaa@6986@

1 q ( y 2 m y 1 ) 2 m y 1 y 2 F (r)   m y 1 d q r+ 1q q( y 2 m y 1 ) F( y 2 )      (8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKae8hiaaIaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaaeiiaiaabccacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YjabgUcaRmaalaaabaGaaGymaiabgkHiTiaadghaaeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabIdacaqGPaaaaa@8207@

and

3 = 0 1 [ 2 ] q (w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijnaaBaaaleaacaaIZaaabeaakiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaaiIcacqWFWa=DcqGHsisldaWcaaqaaiaaigdaaeaacaWGXbaaaiaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@6F5D@

= 1 q [ 2 ] q ( y 2 m y 1 ) F( y 2 +qm y 1 [ 2 ] q )+ 1 q( y 2 m y 1 ) F(m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadghadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccaaIOaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiab=va8gjaaiIcadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@762F@

1 y 2 m y 1 0 1 [ 2 ] q F(wq y 2 +m(1wq) y 1 ) d q w.     (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccqWFfaVrcaaIOaGae8hmWFNaamyCaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaadghacaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeyoaiaabMcaaaa@71FB@

Thus from (7), (8) and (9), we have

1 + 2 3 = 1 q( y 2 m y 1 ) F( y 2 +qm y 1 [ 2 ] q ) 1 q ( y 2 m y 1 ) 2 m y 1 y 2 F (r) m y 1 d q r     (10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=frijnaaBaaaleaacaaIXaaabeaakiabgUcaRiab=frijnaaBaaaleaacaaIYaaabeaakiabgkHiTiab=frijnaaBaaaleaacaaIZaaabeaakiaai2dadaWcaaqaaiaaigdaaeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiab=va8gjaaiIcadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaapedabeWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gjaaiIcacqWFRaVCcaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabcdacaqGPaaaaa@8F71@

and we obtain required equality (6) by multiplying q( y 2 m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaa@4CA8@ on both sides of (10). Thus, the proof is accomplished.

Remark 1 In Lemma 2, we have

  • if we set α=m=1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaiaaiYcaaaa@3D1A@ then we find [14, Lemma 11].
If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@  and later taking q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [42, Lemma 2.1].

Lemma 3 For a q-differentiable function F:[ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiQdacaaIBbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2facqGHsgIRtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5A1A@  with m y 1 D q F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gbaa@4A24@ is continious and integrable on [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , the following equality holds:

1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r F( y 2 )+qF(m y 1 ) [ 2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCcqGHsisldaWcaaqaaiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaey4kaSIaamyCaiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaaaa@75BD@

= q( y 2 m y 1 ) [ 2 ] q 0 1 (1 [ 2 ] q w ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w      (11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGikaiaaigdacqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIPaGaaGiiamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFWa=DcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabgdacaqGPaaaaa@81EB@

Proof. From fundamental properties of quantum integral, we have

0 1 (1 [ 2 ] q w ) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGikaiaaigdacqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaOGae8hmWFNaaGykaiaaiccadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@6C4C@

= (1 [ 2 ] q w)F( y 2 w+m(1w) y 1 ) y 2 m y 1 | 0 1 + [ 2 ] q y 2 m y 1 0 1 F(qw y 2 +m(1qw) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaeiaabaWaaSaaaeaacaaIOaGaaGymaiabgkHiTmaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGccqWFWa=DcaaIPaGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiab=bd83jabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabgUcaRmaalaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqWFfaVrcaaIOaGaamyCaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiaadghacqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=Daaa@92BF@

= qF( y 2 )+F(m y 1 ) y 2 m y 1 + [ 2 ] q y 2 m y 1 0 1 F(qw y 2 +m(1qw) y 1 ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaGaamyCamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaakeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaaakmaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiab=va8gjaaiIcacaWGXbGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0IaamyCaiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83baa@843D@

= qF( y 2 )+F(m y 1 ) y 2 m y 1 + [ 2 ] q (1q) q( y 2 m y 1 ) n=0 q n+1 F( q n+1 y 2 +m(1 q n+1 ) y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaGaamyCamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccaaIOaGaaGymaiabgkHiTiaadghacaaIPaaabaGaamyCaiaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqWFfaVrcaaIOaGaamyCamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcaWGXbWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaa@8E06@

= qF( y 2 )+F(m y 1 ) y 2 m y 1 + [ 2 ] q (1q) q( y 2 m y 1 ) ( k=0 q k F( q k y 2 +m(1 q k ) y 1 )F( y 2 ) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaGaamyCamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccaaIOaGaaGymaiabgkHiTiaadghacaaIPaaabaGaamyCaiaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaadaqadaqaamaaqahabeWcbaGaam4Aaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGccaWGXbWaaWbaaSqabeaacaWGRbaaaOGae8xbWBKaaGikaiaadghadaahaaWcbeqaaiaadUgaaaGccqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcaWGXbWaaWbaaSqabeaacaWGRbaaaOGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaGaayjkaiaawMcaaaaa@91D0@

= qF( y 2 )+F(m y 1 ) y 2 m y 1 + [ 2 ] q q ( y 2 m y 1 ) 2 m y 1 y 2 F (r) m y 1 d q r [ 2 ] q (1q) q( y 2 m y 1 ) F( y 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaGaamyCamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaakeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaapedabeWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gjaaiIcacqWFRaVCcaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaeyOeI0YaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccaaIOaGaaGymaiabgkHiTiaadghacaaIPaaabaGaamyCaiaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@9B73@

= F( y 2 )+qF(m y 1 ) q( y 2 m y 1 ) + [ 2 ] q q ( y 2 m y 1 ) 2 m y 1 y 2 F (r) m y 1 d q r.     (12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgkHiTmaalaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaey4kaSIaamyCaiab=va8gjaaiIcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadghacaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaGaey4kaSYaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaakeaacaWGXbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaaakmaapedabeWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabaGae8NmWN3aaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiab=va8gjaaiIcacqWFRaVCcaaIPaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGae83kWlNaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGYaGaaeykaaaa@8B07@

and we obtain the required equality (11) by multiplying q( y 2 m y 1 ) [ 2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaaaa@5088@ on both sides of (12). Thus, the proof is accomplished.

Remark 2 In Lemma 3, we have

  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [41, Lemma 3.1].
If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@  and later taking limit as q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [43, Lemma 2.1].
Midpoint Type inequalities for (α, m) -convex functions

Theorem 4  Under the assumption of Lemma 2, if | m y 1 D q F| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaI8baaaa@4C30@  is (α,m) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeg7aHjaaiYcacaWGTbGaaGykaaaa@3C36@  convex function over [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , then we have the following midpoint type inequality:

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 )[( A 1 (q)+ A 3 (q)) | m y 1 D q F( y 2 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaIBbGaaGikaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacqGHRaWkcaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadghacaaIPaGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaaaa@6B2D@

+m( A 2 (q)+ A 4 (q)) | m y 1 D q F( y 1 )|],     (13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaamyBaiaayIW7caaMi8UaaGikaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcacqGHRaWkcaWGbbWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadghacaaIPaGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhacaaIDbGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGZaGaaeykaaaa@6ABA@

where

A 1 (q)= 0 1 [ 2 ] q w α+1 d q w= 1 [ 2 ] q α+2 [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83naaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaI9aWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacqaHXoqycqGHRaWkcaaIYaaaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaaa@6A7F@

A 2 (q)= 0 1 [ 2 ] q w(1 w α ) d q w= 1 [ 2 ] q 3 1 [ 2 ] q α+2 [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83jaaiIcacaaIXaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaikdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@777E@

A 3 (q)= 1 [ 2 ] q 1 w α ( 1 q w ) d q w= 1 q [ α+1 ] q 1 [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83naaCaaaleqabaGaeqySdegaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTiab=bd83bGaayjkaiaawMcaaiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaaigdaaeaacaWGXbWaamWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaeqySdeMaey4kaSIaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaaaa@744A@

1 q [ 2 ] q α+1 [α+1] q + 1 [ 2 ] q α+2 [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaeqySdeMaey4kaSIaaGymaaaakiaaiUfacqaHXoqycqGHRaWkcaaIXaGaaGyxamaaBaaaleaacaWGXbaabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaikdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@5699@

A 4 (q)= 1 [ 2 ] q 1 ( 1 q w )(1 w α ) d q w= 1 [ 2 ] q 3 1 q [ α+1 ] q + 1 [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaI0aaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTmrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DaiaawIcacaGLPaaacaaIOaGaaGymaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdegaaOGaaGykaiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyCamaadmaabaGaeqySdeMaey4kaSIaaGymaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaadaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@7D9D@

+ 1 q [ 2 ] q α+1 [α+1] q 1 [ 2 ] q α+2 [ α+2 ] q . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyCamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaeqySdeMaey4kaSIaaGymaaaakiaaiUfacqaHXoqycqGHRaWkcaaIXaGaaGyxamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaikdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaaGOlaaaa@575B@

Proof. By taking modulus in (6), and using (a, m) -convexity of | m y 1 D q F| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaI8baaaa@4C30@ , we have

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) [ 0 1 [ 2 ] q w | m y 1 D q F(w y 2 +m(1w) y 1 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGaaGjcVlaayIW7cqWFWa=DcaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLBbaaaaa@810F@

+ 1 [ 2 ] q 1 ( 1 q w ) | m y 1 D q F(w y 2 +m(1w) y 1 )| d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTmrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DaiaawIcacaGLPaaacaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLDbaaaaa@7A1A@

0 1 [ 2 ] q w α+1 | m y 1 D q F( y 2 )| d q w+ 0 1 [ 2 ] q m(w w α+1 ) | m y 1 D q F( y 1 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccaaMi8UaaGjcVprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DdaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaGccaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacaaMi8UaaGjcVlaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcqGHRaWkdaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8UaamyBaiaaiIcacqWFWa=DcqGHsislcqWFWa=DdaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaGccaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@9C41@

+ 1 [ 2 ] q 1 ( w α q w α+1 ) | m y 1 D q F( y 2 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8qmaeqaleaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaaeaacaaIXaaaniabgUIiYdGccaaMi8UaaGjcVpaabmaabaWaaSaaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaaakeaacaWGXbaaaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83baa@739C@

+ 1 [ 2 ] q 1 m( 1 q w )(1 w α ) | m y 1 D q F( y 1 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaa8qmaeqaleaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaaeaacaaIXaaaniabgUIiYdGccaaMi8UaaGjcVlaad2gadaqadaqaamaalaaabaGaaGymaaqaaiaadghaaaGaeyOeI0Yefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83bGaayjkaiaawMcaaiaaiIcacaaIXaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaa@74E2@

=q( y 2 m y 1 ) [ A 1 (q) | m y 1 D q F( y 2 )|+m A 2 (q) | m y 1 D q F( y 1 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadghacaaIOaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaWaamqaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bGaey4kaSIaamyBaiaayIW7caaMi8UaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaaGaay5waaaaaa@7E80@

+ A 3 (q) | m y 1 D q F( y 2 )|+m A 4 (q) | m y 1 D q F( y 1 )| ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgUcaRiaad2gacaaMi8UaaGjcVlaadgeadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamyCaiaaiMcacaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhaaiaaw2faaaaa@7445@

=q( y 2 m y 1 )[( A 1 (q)+ A 3 (q)) | m y 1 D q F( y 2 )|+m( A 2 (q)+ A 4 (q)) | m y 1 D q F( y 1 )|]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadghacaaIOaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaG4waiaaiIcacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaWGTbGaaGjcVlaayIW7caaIOaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamyCaiaaiMcacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGyxaiaai6caaaa@8CC0@

Thus, the proof is accomplished.

Remark 3 In Theorem 4, we have

  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [14, Theorem 13].
  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@  and later taking the limit as q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [42, Theorem 2.2].

Theorem 5  Under the assumption of Lemma 2, If | m y 1 D q F(r )| r ,r1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccaaISaGaaGjcVlaayIW7caWGYbWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFLjsHcaaIXaaaaa@6194@  is (a, m) convex function over [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , then we have the following midpoint type inequality:

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) [ 2 ] q 3(r1) r [ ( A 1 (q) | m y 1 D q F( y 2 )| r +m A 2 (q) | m y 1 D q F( y 1 )| r ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaWaaSaaaeaacaaIZaGaaGikaiaadkhacqGHsislcaaIXaGaaGykaaqaaiaadkhaaaaaaaaakmaadeaabaGaaGikaiaadgeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccqGHRaWkcaWGTbGaaGjcVlaayIW7caWGbbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaawUfaaaaa@8EDB@

+ ( A 3 (q) | m y 1 D q F( y 2 )| r +m A 4 (q) | m y 1 D q F( y 1 )| r ) 1 r ]     (14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaaIOaGaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccqGHRaWkcaWGTbGaaGjcVlaayIW7caWGbbWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaaw2faaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG0aGaaeykaaaa@7FF0@

Proof. By taking modulus in (6), and using power mean inequality, we have

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) [ 0 1 [ 2 ] q |w m y 1 D q F(w y 2 +m(1w) y 1 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGaaGjcVlaayIW7caaI8bGae8hmWFNaaGjcVlaayIW7daWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLBbaaaaa@810F@

+ 1 [ 2 ] q 1 | ( w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) | d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaqWaaeaadaqadaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DcqGHsisldaWcaaqaaiaaigdaaeaacaWGXbaaaaGaayjkaiaawMcaaiaayIW7caaMi8+aaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaacaGLhWUaayjcSdGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLDbaaaaa@7B30@

q( y 2 m y 1 ) [ ( 0 1 [ 2 ] q w d q w ) 1 1 r ( 0 1 [ 2 ] q w | m y 1 D q F(w y 2 +m(1w) y 1 )| r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaabmaabaWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccaaMi8UaaGjcVlab=bd83jaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGYbaaaaaakmaabmaabaWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccqWFWa=DcaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaOGaay5waaaaaa@98B4@

+ ( 1 [ 2 ] q 1 ( 1 q w ) d q w ) 1 1 r ( 1 [ 2 ] q 1 ( 1 q w ) | m y 1 D q F(w y 2 +m(1w) y 1 ) | r d q w ) 1 r ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaqadaqaamaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7daqadaqaamaalaaabaGaaGymaaqaaiaadghaaaGaeyOeI0Yefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83bGaayjkaiaawMcaaiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadkhaaaaaaOWaaeWaaeaadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTiab=bd83bGaayjkaiaawMcaaiaayIW7caaMi8+aaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaiaawEa7caGLiWoadaahaaWcbeqaaiaadkhaaaGccaaMi8UaaGjcVlaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadkhaaaaaaaGccaGLDbaaaaa@9D51@

By applying (α, m)-convexity of | m y 1 D q F(r )| r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaaaaa@50CB@ , we have

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) ( 1 [ 2 ] q 3 ) 1 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaqadaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaaa@58E0@

× [ ( 0 1 [ 2 ] q w α+1 | m y 1 D q F( y 2 )| r d q w+ 0 1 [ 2 ] q m(w w α+1 )| m y 1 D q F( y 1 )| r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamqaaeaadaqadaqaamaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8amrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaakiab=bd83naaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaakiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jabgUcaRmaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGaamyBaiaayIW7caaMi8UaaGikaiab=bd83jabgkHiTiab=bd83naaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaakiaaiMcacaaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaOGaay5waaaaaa@9D38@

( + 1 [ 2 ] q 1 ( w α q w α+1 ) | m y 1 D q F( y 2 )| r d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeqaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaeWaaeaadaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DdaahaaWcbeqaaiabeg7aHbaaaOqaaiaadghaaaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLOaaaaaa@7590@

+ 1 [ 2 ] q 1 m( 1 q w )(1 w α ) | m y 1 D q F( y 1 ) | r d q w ) 1 r ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaadaqacaqaaiabgUcaRmaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7caWGTbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTmrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DaiaawIcacaGLPaaacaaIOaGaaGymaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdegaaOGaaGykaiaayIW7caaMi8+aaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaOGaayzxaaaaaa@7AE5@

= q( y 2 m y 1 ) [ 2 ] q 3(r1) r [ ( A 1 (q) | m y 1 D q F( y 2 )| r +m A 2 (q) | m y 1 D q F( y 1 )| r ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaamaalaaabaGaaG4maiaaiIcacaWGYbGaeyOeI0IaaGymaiaaiMcaaeaacaWGYbaaaaaaaaGcdaWabaqaaiaaiIcacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaey4kaSIaamyBaiaayIW7caaMi8UaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiaaiMcadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadkhaaaaaaaGccaGLBbaaaaa@8DED@

+ ( A 3 (q) | m y 1 D q F( y 2 )| r +m A 4 (q) | m y 1 D q F( y 1 )| r ) 1 r ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaaIOaGaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccqGHRaWkcaWGTbGaaGjcVlaayIW7caWGbbWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadghacaaIPaGaaGjcVlaayIW7caaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaaw2faaiaai6caaaa@7AB7@

Thus, the proof is accomplished.

Remark 4 In Theorem 5, If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [14, Theorem 16].

Theorem 6  Under the assumption of Lemma 2, if r > 1 is a real number, if | m y 1 D q F(r )| r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaaaaa@50CB@  is (a, m) convex function over [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , then we have the following midpoint type inequality,

r 1 + s 1 =1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRiaadohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaI9aGaaGymaaaa@3F9B@

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaa@4E5D@

× [ ( 1 [ 2 ] q s+1 [ s+1 ] q ) 1 s ( B 1 (q )| m y 1 D q F( y 2 )| r +m C 1 (q )| m y 1 D q F( y 1 )| r ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamqaaeaadaqadaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaam4CaiabgUcaRiaaigdaaaGcdaWadaqaaiaadohacqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaqadaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacaaI8bWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiabgUcaRiaad2gacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaawUfaaaaa@825E@

+ (η(q)) 1 s ( B 2 (q )| m y 1 D q F( y 2 )| r +m C 2 (q )| m y 1 D q F( y 1 )| r ) 1 r ],     (15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaaIOaGaeq4TdGMaaGikaiaadghacaaIPaGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaqadaqaaiaadkeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcacaaI8bWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiabgUcaRiaad2gacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaaw2faaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeynaiaabMcaaaa@7ECB@

where

B 1 (q)= 0 1 [ 2 ] q w α d q w= 1 [ 2 ] q α+1 [ α+1 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83naaCaaaleqabaGaeqySdegaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaigdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@68E1@

B 2 (q)= 1 [ 2 ] q 1 w α d q w= 1 [ α+1 ] q 1 [ 2 ] q α+1 [ α+1 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83naaCaaaleqabaGaeqySdegaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaaigdaaeaadaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacqaHXoqycqGHRaWkcaaIXaaaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaaa@70F5@

C 1 (q)= 0 1 [ 2 ] q (1 w α ) d q w= 1 [ 2 ] q 1 [ 2 ] q α+1 [ α+1 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8UaaGikaiaaigdacqGHsisltuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaigdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@74A3@

C 2 (q)= 1 [ 2 ] q 1 (1 w α ) d q w= q [ 2 ] q 1 [ α+1 ] q + 1 [ 2 ] q α+1 [ α+1 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8UaaGikaiaaigdacqGHsisltuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGypamaalaaabaGaamyCaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacqaHXoqycqGHRaWkcaaIXaaaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaaa@7CE7@

η(q)= 1 [ 2 ] q 1 ( 1 q w ) s d q w. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaaGikaiaadghacaaIPaGaaGypamaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7daqadaqaamaalaaabaGaaGymaaqaaiaadghaaaGaeyOeI0Yefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaGaam4CaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai6caaaa@6147@

Proof. Taking absolute value of (6) and using the Hölder's inequality, we have

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) [ 0 1 [ 2 ] q |w m y 1 D q F(w y 2 +m(1w) y 1 )| d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGaaGjcVlaayIW7caaI8bGae8hmWFNaaGjcVlaayIW7daWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLBbaaaaa@810F@

+ 1 [ 2 ] q 1 | ( w 1 q ) m y 1 D q F(w y 2 +m(1w) y 1 ) | d q w ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaqWaaeaadaqadaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DcqGHsisldaWcaaqaaiaaigdaaeaacaWGXbaaaaGaayjkaiaawMcaaiaayIW7caaMi8+aaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaacaGLhWUaayjcSdGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLDbaaaaa@7B30@

q( y 2 m y 1 ) [ ( 0 1 [ 2 ] q w s d q w ) 1 s ( 0 1 [ 2 ] q | m y 1 D q F(w y 2 +m(1w) y 1 )| r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaabmaabaWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccaaMi8UaaGjcVlab=bd83naaCaaaleqabaGaam4CaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadohaaaaaaOWaaeWaaeaadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFWa=DcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccaaMi8UaaGjcVlaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadkhaaaaaaaGccaGLBbaaaaa@9620@

+ ( 1 [ 2 ] q 1 ( 1 q w ) s d q w ) 1 s ( 1 [ 2 ] q 1 | m y 1 D q F(w y 2 +m(1w) y 1 ) | r d q w ) 1 r ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkdaqadaqaamaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7daqadaqaamaalaaabaGaaGymaaqaaiaadghaaaGaeyOeI0Yefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaGaam4CaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaqadaqaamaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7caaMi8UaaGjcVpaaemaabaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGYbaaaOGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaOGaayzxaaaaaa@9686@

By applying (α, m) convexity of | m y 1 D q F(r )| r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaaaaa@50CB@ , we have

| F( y 2 +qm y 1 [ 2 ] q ) 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWB0aaeWaaeaadaWcaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaaaaOWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGae8xbWBKaaGikaiab=Tc8YjaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFRaVCaiaawEa7caGLiWoaaaa@75E8@

q( y 2 m y 1 ) [ ( 0 1 [ 2 ] q w s d q w ) 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcadaWabaqaamaabmaabaWaa8qmaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaaniabgUIiYdGccaaMi8UaaGjcVlab=bd83naaCaaaleqabaGaam4CaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadohaaaaaaaGccaGLBbaaaaa@64F7@

× ( 0 1 [ 2 ] q w α | m y 1 D q F( y 2 )| r d q w+ 0 1 [ 2 ] q m(1 w α )| m y 1 D q F( y 1 )| r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGccqWFWa=DdaahaaWcbeqaaiabeg7aHbaakiaayIW7caaMi8UaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jabgUcaRmaapedabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOGaamyBaiaayIW7caaMi8UaaGikaiaaigdacqGHsislcqWFWa=DdaahaaWcbeqaaiabeg7aHbaakiaaiMcacaaI8bWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bWaaWbaaSqabeaacaWGYbaaaOGaaGjcVlaayIW7caWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaaa@9798@

+ ( 1 [ 2 ] q 1 ( 1 q w ) s d q w ) 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaeWaaeaadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaayIW7caaMi8+aaeWaaeaadaWcaaqaaiaaigdaaeaacaWGXbaaaiabgkHiTmrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaaiaadohaaaGccaaMi8UaaGjcVlaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadohaaaaaaaaa@601C@

× ( 1 [ 2 ] q 1 w α | m y 1 D q F( y 2 )| r d q w+ 1 [ 2 ] q 1 m(1 w α )| m y 1 D q F( y 1 )| r d q w ) 1 r ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHxdaTdaqadaqaamaapedabeWcbaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaeaacaWGXbaabeaaaaaabaGaaGymaaqdcqGHRiI8aOGaaGjcVlaayIW7tuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaMi8UaaGjcVlaaiYhadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccaaMi8UaaGjcVlaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcqGHRaWkdaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaad2gacaaMi8UaaGjcVlaaiIcacaaIXaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaGaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiaayIW7caaMi8UaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaaw2faaaaa@9BC4@

=q( y 2 m y 1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadghacaaIOaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiabgkHiTiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaa@4D6F@

× [ ( 1 [ 2 ] q s+1 [ s+1 ] q ) 1 s ( B 1 (q )| m y 1 D q F( y 2 )| r +m C 1 (q )| m y 1 D q F( y 1 )| r ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamqaaeaadaqadaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaam4CaiabgUcaRiaaigdaaaGcdaWadaqaaiaadohacqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaqadaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacaaI8bWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiabgUcaRiaad2gacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaawUfaaaaa@825E@

+ (η(q)) 1 s ( B 2 (q )| m y 1 D q F( y 2 )| r +m C 2 (q )| m y 1 D q F( y 1 )| r ) 1 r ]     (16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaaIOaGaeq4TdGMaaGikaiaadghacaaIPaGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaqadaqaaiaadkeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcacaaI8bWaaSbaaSqaaiaad2gatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaakiabgUcaRiaad2gacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaaGiFamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFamaaCaaaleqabaGaamOCaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaaakiaaw2faaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG2aGaaeykaaaa@7E16@

Thus, the proof is accomplished.

Remark 5 In Theorem 6, we have

  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [14, Theorem 18].
  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ and later taking the limit as q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [42, Theorem 2.3].
Trapezoid type inequalities for (α, m)-convex functions

In this section, we prove Trapezoid type inequalities for differentiable (α, m) -convex functions.

Theorem 7  Under the assumption of Lemma 3, if | m y 1 D q F| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaI8baaaa@4C30@ is (a, m) convex function over [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , then we have the following trapezoid type inequality:

| F( y 2 )+qF(m y 1 ) [ 2 ] q + 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqGHsisldaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiaadghacqWFfaVrcaaIOaGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbGaay5bSlaawIa7aaaa@79CB@

q( y 2 m y 1 ) [ 2 ] q [ | m y 1 D q F( y 2 ) |( K 1 (q) K 2 (q)) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaWabaqaamaaemaabaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcaaiaawEa7caGLiWoacaaIOaGaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiabgkHiTiaadUeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcacaaIPaaacaGLBbaaaaa@6D3F@

+m| m y 1 D q F( y 1 ) |( L 1 (q) L 2 (q)) ],     (17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamGaaeaacqGHRaWkcaWGTbWaaqWaaeaadaWgaaWcbaGaamyBamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaiaawEa7caGLiWoacaaIOaGaamitamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiabgkHiTiaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcacaaIPaaacaGLDbaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabEdacaqGPaaaaa@65C5@

where

K 1 (q)= 0 1 [ 2 ] q ( w α [ 2 ] q w α+1 ) d q w= q α+1 [ 2 ] q α+1 [ α+1 ] q [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DdaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaadghadaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaigdaaaGcdaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaaa@7B8C@

K 2 (q)= 1 [ 2 ] q 1 ( w α [ 2 ] q w α+1 ) d q w= 1 [ α+1 ] q [ 2 ] q [ α+2 ] q q α+1 [ 2 ] q α+1 [ α+1 ] q [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DdaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaGccaaIPaGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83jaai2dadaWcaaqaaiaaigdaaeaadaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0YaaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaakeaadaWadaqaaiabeg7aHjabgUcaRiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0YaaSaaaeaacaWGXbWaaWbaaSqabeaacqaHXoqycqGHRaWkcaaIXaaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacqaHXoqycqGHRaWkcaaIXaaaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaaa@8ED2@

L 1 (q)= 0 1 [ 2 ] q (1 [ 2 ] q w)(1 w α ) d q w= q [ 2 ] q 2 q α+1 [ 2 ] q α+1 [ α+1 ] q [ α+2 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaakiab=bd83jaaiMcacaaIOaGaaGymaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdegaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaI9aWaaSaaaeaacaWGXbaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaamyCamaaCaaaleqabaGaeqySdeMaey4kaSIaaGymaaaaaOqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaeqySdeMaey4kaSIaaGymaaaakmaadmaabaGaeqySdeMaey4kaSIaaGymaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaeqySdeMaey4kaSIaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaaaa@826C@

L 2 (q)= 1 [ 2 ] q 1 (1 [ 2 ] q w)(1 w α ) d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaai2dadaWdXaqabSqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqaaiaaigdaa0Gaey4kIipakiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaakiab=bd83jaaiMcacaaIOaGaaGymaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdegaaOGaaGykaiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=Daaa@62E2@

= q [α] q [ α+1 ] q [ α+2 ] q q [ 2 ] q 2 + 1 [ α+1 ] q [ 2 ] q α+1 1 [ α+2 ] q [ 2 ] q α+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiUfacqaHXoqycaaIDbWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaamyCaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaadaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiabeg7aHjabgUcaRiaaigdaaaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacqaHXoqycqGHRaWkcaaIXaaaaaaaaaa@6F6B@

Proof. By taking modulus in (11), and using (α, m) -convexity of | m y 1 D q F| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaI8baaaa@4C30@ , we have

| F( y 2 )+qF(m y 1 ) [ 2 ] q + 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqGHsisldaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiaadghacqWFfaVrcaaIOaGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbGaay5bSlaawIa7aaaa@79CB@

= q( y 2 m y 1 ) [ 2 ] q | 0 1 (1 [ 2 ] q w) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaaqWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaIOaGaaGymaiabgkHiTmaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiab=bd83jaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLhWUaayjcSdaaaa@7DD2@

q( y 2 m y 1 ) [ 2 ] q 0 1 | (1 [ 2 ] q w) || m y 1 D q F(w y 2 +m(1w) y 1 ) | d q w MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGykaaGaay5bSlaawIa7amaaemaabaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=bd83jab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83jaaiMcacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaacaGLhWUaayjcSdGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83baa@81E2@

q( y 2 m y 1 ) [ 2 ] q ( 0 1 | (1 [ 2 ] q w) | w α | m y 1 D q F( y 2 ) | d q w + 0 1 | (1 [ 2 ] q w) |m(1 w α )| m y 1 D q F( y 1 ) | d q w ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaqadaqaauaabeqaceaaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGykaaGaay5bSlaawIa7aiab=bd83naaCaaaleqabaGaeqySdegaaOWaaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaGaay5bSlaawIa7aiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaeaacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGae8hmWFNaaGykaaGaay5bSlaawIa7aiaad2gacaaIOaGaaGymaiabgkHiTiab=bd83naaCaaaleqabaGaeqySdegaaOGaaGykamaaemaabaWaaSbaaSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGae8xbWBKaaGikaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaiaawEa7caGLiWoacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhaaaGaayjkaiaawMcaaaaa@A783@

= q( y 2 m y 1 ) [ 2 ] q [ | m y 1 D q F( y 2 ) |( K 1 (q) K 2 (q)) +m| m y 1 D q F( y 1 ) |( L 1 (q) L 2 (q)) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaamqaaeaadaabdaqaamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaaacaGLhWUaayjcSdGaaGikaiaadUeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacqGHsislcaWGlbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaaGykaaGaay5waaWaamGaaeaacqGHRaWkcaWGTbWaaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7aiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaeyOeI0IaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcaaiaaw2faaaaa@8921@

Thus, the proof is accomplished.

Remark 6 In Theorem 7, we have

  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [41, Theorem 4.1].
  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@  and later taking the limit as q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [43, Theorem 2.2].

Theorem 8  Under the assumption of Lemma 3, if | m y 1 D q F(r )| r ,r1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaGccaaISaGaaGjcVlaayIW7caWGYbWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiyaacqGFLjsHcaaIXaaaaa@6194@ is (α, m) convex function over [ y 1 , y 2 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaISaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@4AF0@ , then we have the following trapezoid type inequality:

| F( y 2 )+qF(m y 1 ) [ 2 ] q + 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqGHsisldaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiaadghacqWFfaVrcaaIOaGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbGaay5bSlaawIa7aaaa@79CB@

q( y 2 m y 1 ) [ 2 ] q ( 2q [ 2 ] q 2 ) 1 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaqadaqaamaalaaabaGaaGOmaiaadghaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOCaaaaaaaaaa@5DC0@

×[ | m y 1 D q F( y 2 ) | r ( K 1 (q) K 2 (q))+m | m y 1 D q F( y 1 ) | r ( L 1 (q) L 2 (q)) ],      (18) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamWaaeaadaabdaqaamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaaiIcacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacqGHRaWkcaWGTbWaaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaeyOeI0IaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcaaiaawUfacaGLDbaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG4aGaaeykaaaa@85CD@

Proof. By taking modulus in (11) and using power mean inequality, we have

| F( y 2 )+qF(m y 1 ) [ 2 ] q + 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqGHsisldaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiaadghacqWFfaVrcaaIOaGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbGaay5bSlaawIa7aaaa@79CB@

= q( y 2 m y 1 ) [ 2 ] q | 0 1 (1 [ 2 ] q w) m y 1 D q F(w y 2 +m(1w) y 1 ) d q w | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaaqWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaIOaGaaGymaiabgkHiTmaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiab=bd83jaaiMcadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8hmWFNae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWFNaaGykaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGKbWaaSbaaSqaaiaadghaaeqaaOGae8hmWFhacaGLhWUaayjcSdaaaa@7DD2@

q( y 2 m y 1 ) [ 2 ] q ( 0 1 | (1 [ 2 ] q w) | d q w ) 1 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaaemaabaGaaGikaiaaigdacqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIPaaacaGLhWUaayjcSdGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadkhaaaaaaaaa@6B66@

× ( 0 1 | (1 [ 2 ] q w) | | m y 1 D q F(w y 2 +m(1w) y 1 ) | r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiaaiIcacaaIXaGaeyOeI0YaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaakiab=bd83jaaiMcaaiaawEa7caGLiWoadaabdaqaamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFWa=DcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcqWFWa=DcaaIPaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadkhaaaaaaaaa@78A3@

By applying (α, m)-convexity of | m y 1 D q F(r )| r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae83kWlNaaGykaiaaiYhadaahaaWcbeqaaiaadkhaaaaaaa@50CB@ , we have

| F( y 2 )+qF(m y 1 ) [ 2 ] q + 1 y 2 m y 1 m y 1 y 2 F (r) m y 1 d q r | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacqGHsisldaWcaaqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgUcaRiaadghacqWFfaVrcaaIOaGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaaaaGcdaWdXaqabSqaaiaad2gacqWFYaFEdaWgaaqaaiaaigdaaeqaaaqaaiab=jd85naaBaaabaGaaGOmaaqabaaaniabgUIiYdGccqWFfaVrcaaIOaGae83kWlNaaGykamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8YbGaay5bSlaawIa7aaaa@79CB@

q( y 2 m y 1 ) [ 2 ] q ( 0 1 | (1 [ 2 ] q w) | d q w ) 1 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGcdaqadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaaemaabaGaaGikaiaaigdacqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIPaaacaGLhWUaayjcSdGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadkhaaaaaaaaa@6B66@

× ( 0 1 | (1 [ 2 ] q w) | w α | m y 1 D q F( y 2 ) | r d q w + 0 1 | (1 [ 2 ] q w) |m(1 w α ) | m y 1 D q F( y 1 ) | r d q w ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaafaqabeGabaaabaWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaaqWaaeaacaaIOaGaaGymaiabgkHiTmaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGccqWFWa=DcaaIPaaacaGLhWUaayjcSdGae8hmWF3aaWbaaSqabeaacqaHXoqyaaGcdaabdaqaamaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiab=va8gjaaiIcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGYbaaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=bd83bqaaiabgUcaRmaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakmaaemaabaGaaGikaiaaigdacqGHsisldaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqWFWa=DcaaIPaaacaGLhWUaayjcSdGaamyBaiaaiIcacaaIXaGaeyOeI0Iae8hmWF3aaWbaaSqabeaacqaHXoqyaaGccaaIPaWaaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqWFWa=DaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaaa@9DE9@

= q( y 2 m y 1 ) [ 2 ] q ( 2q [ 2 ] q 2 ) 1 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaaeWaaeaadaWcaaqaaiaaikdacaWGXbaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadkhaaaaaaaaa@5CD2@

×[ | m y 1 D q F( y 2 ) | r ( K 1 (q) K 2 (q))+m | m y 1 D q F( y 1 ) | r ( L 1 (q) L 2 (q)) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamWaaeaadaabdaqaamaaBaaaleaacaWGTbWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaaiIcacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaeyOeI0Iaam4samaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacqGHRaWkcaWGTbWaaqWaaeaadaWgaaWcbaGaamyBaiab=jd85naaBaaabaGaaGymaaqabaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqWFfaVrcaaIOaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaeyOeI0IaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcaaiaawUfacaGLDbaaaaa@7E7F@

Thus, the proof is accomplished.

Remark 7 In Theorem 8, we have

  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ , then we find [41, Theorem 4.2].
  • If we set α=m=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaad2gacaaI9aGaaGymaaaa@3C64@ and later taking the limit as q 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdadaahaaWcbeqaaiabgkHiTaaaaaa@3C42@ , then we find [46, Theorem 6].
Application to special means

For any positive number y 1 , y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risbaa@5561@ , we consider the following means:

  • The Arithmetic mean

A( y 1 , y 2 )= y 1 + y 2 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aWaaSaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWFYaFEdaWgaaWcbaGaaGOmaaqabaaakeaacaaIYaaaaaaa@53E7@

  • The Harmonic mean

H( y 1 , y 2 )= 2 y 1 y 2 y 1 + y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aWaaSaaaeaacaaIYaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGae8NmWN3aaSbaaSqaaiaaikdaaeqaaaGcbaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIae8NmWN3aaSbaaSqaaiaaikdaaeqaaaaaaaa@5A07@

  • The Geometric mean

G( y 1 , y 2 )= y 1 y 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aWaaOaaaeaacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqWFYaFEdaWgaaWcbaGaaGOmaaqabaaabeaakiaayIW7caaMi8UaaGjcVlaai6caaaa@57BA@

Proposition 1 Let y 1 , y 2 , y 1 < y 2 ,α0,1],m0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risjaaiYcacaaMi8UaaGjcVlab=jd85naaBaaaleaacaaIXaaabeaakiaaiYdacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaaGjcVlaayIW7cqaHXoqycqGHiiIZcaaIWaGaaGilaiaaigdacaaIDbGaaGilaiaayIW7caaMi8UaamyBaiabgIGiolaaicdacaaISaGaaGymaiaai2faaaa@738F@ and  0<q<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiYdacaWGXbGaaGipaiaaigdaaaa@3B81@ . Then we have

| H( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) ϒ 1 | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGibGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0YaaSaaaeaacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaWGbbGaaGikaiaaigdacaaISaGaamyCaiaaiMcaaaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdaaaa@64C6@

q( y 2 m y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadEeadaahaaWcbeqaaiaaikdaaaGccaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadgeacaaIOaGaaGymaiaaiYcacaWGXbGaaGykaaaaaaa@5EE4@

× 1 y 2 (q y 2 +(1q)m y 1 ) ( A 1 (q)+ A 3 (q))+ 1 m y 1 2 ( A 2 (q)+ A 4 (q))      (19) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaSaaaeaacaaIXaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGikaiaaigdacqGHsislcaWGXbGaaGykaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiaaiIcacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbGae8NmWN3aa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiaaiIcacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaI0aaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabMdacaqGPaaaaa@7876@

where ϒ 1 = 1 ( y 2 m y 1 ) m y 1 y 2 1 r m y 1 d q r=(1q) n=0 q n q n y 2 +m(1 q n ) y 1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaGymaaqaaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOWaaSaaaeaacaaIXaaabaGae83kWlhaaiaayIW7caaMi8UaaGjcVpaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8Yjaai2dacaaIOaGaaGymaiabgkHiTiaadghacaaIPaWaaabmaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaamyCamaaCaaaleqabaGaamOBaaaaaOqaaiaadghadaahaaWcbeqaaiaad6gaaaGccqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcaWGXbWaaWbaaSqabeaacaWGUbaaaOGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaaaaGccaaIUaaaaa@8618@

Proof. The inequality (13) for function F(r)= 2q y 2 m y 1 [ 2 ] q r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiIcacqWFRaVCcaaIPaGaaGypamaalaaabaGaaGOmaiaadghacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGae83kWlhaaaaa@570C@ leads to required result. If we take y 1 =1, y 2 =2,q=0.5,m=0.5 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaai2dacaaIXaGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2dacaaIYaGaaGilaiaadghacaaI9aGaaGimaiaai6cacaaI1aGaaGilaiaad2gacaaI9aGaaGimaiaai6cacaaI1aaaaa@556D@ and α=0.5 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaaicdacaaIUaGaaGynaaaa@3C21@ in (19), we get

| H( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) ϒ 1 |=0.054 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGibGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0YaaSaaaeaacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaWGbbGaaGikaiaaigdacaaISaGaamyCaiaaiMcaaaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdGaaGypaiaaicdacaaIUaGaaGimaiaaiwdacaaI0aaaaa@6936@

and

q( y 2 m y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) [ 1 y 2 (q y 2 +(1q)m y 1 ) ( A 1 (q)+ A 3 (q))+ 1 m y 1 2 ( A 2 (q)+ A 4 (q)) ]=0.071 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadEeadaahaaWcbeqaaiaaikdaaaGccaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadgeacaaIOaGaaGymaiaaiYcacaWGXbGaaGykaaaadaWadaqaauaabeqabeaaaeaadaWcaaqaaiaaigdaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiIcacaaIXaGaeyOeI0IaamyCaiaaiMcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaacaaIOaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamyCaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyBaiab=jd85naaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccaaIOaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamyCaiaaiMcacaaIPaaaaaGaay5waiaaw2faaiaai2dacaaIWaGaaGOlaiaaicdacaaI3aGaaGymaaaa@9116@

Thus, 0.0540.071. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai6cacaaIWaGaaGynaiaaisdacqGHKjYOcaaIWaGaaGOlaiaaicdacaaI3aGaaGymaiaai6caaaa@4148@

Proposition 2 Let y 1 , y 2 , y 1 < y 2 ,α0,1],m0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiYcacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1risjaaiYcacaaMi8UaaGjcVlab=jd85naaBaaaleaacaaIXaaabeaakiaaiYdacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaaGjcVlaayIW7cqaHXoqycqGHiiIZcaaIWaGaaGilaiaaigdacaaIDbGaaGilaiaayIW7caaMi8UaamyBaiabgIGiolaaicdacaaISaGaaGymaiaai2faaaa@738F@  and 0<q<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiYdacaWGXbGaaGipaiaaigdaaaa@3B81@ . Then we have

| G 2 ( y 2 ,qm y 1 ) A( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) ϒ 1 | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0YaaSaaaeaacaWGbbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaWGbbGaaGikaiaaigdacaaISaGaamyCaiaaiMcaaaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdaaaa@70A4@

q( y 2 m y 1 )A( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadgeacaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadEeadaahaaWcbeqaaiaaikdaaaGccaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadgeacaaIOaGaaGymaiaaiYcacaWGXbGaaGykaaaaaaa@69D0@

× 1 y 2 (q y 2 +(1q)m y 1 ) ( A 1 (q)+ A 3 (q))+ 1 m y 1 2 ( A 2 (q)+ A 4 (q))      (20) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaSaaaeaacaaIXaaabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGikaiaaigdacqGHsislcaWGXbGaaGykaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaaaaiaaiIcacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbGae8NmWN3aa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiaaiIcacaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaI0aaabeaakiaaiIcacaWGXbGaaGykaiaaiMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabcdacaqGPaaaaa@786E@

where ϒ 1 = 1 ( y 2 m y 1 ) m y 1 y 2 1 r m y 1 d q r=(1q) n=0 q n q n y 2 +m(1 q n ) y 1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaGymaaqaaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaaWaa8qmaeqaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeaacqWFYaFEdaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOWaaSaaaeaacaaIXaaabaGae83kWlhaaiaayIW7caaMi8UaaGjcVpaaBaaaleaacaWGTbGae8NmWN3aaSbaaeaacaaIXaaabeaaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiab=Tc8Yjaai2dacaaIOaGaaGymaiabgkHiTiaadghacaaIPaWaaabmaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGaamyCamaaCaaaleqabaGaamOBaaaaaOqaaiaadghadaahaaWcbeqaaiaad6gaaaGccqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGTbGaaGikaiaaigdacqGHsislcaWGXbWaaWbaaSqabeaacaWGUbaaaOGaaGykaiab=jd85naaBaaaleaacaaIXaaabeaaaaGccaaIUaaaaa@8618@

Proof. The inequality (13) for function F(r)= q y 2 m y 1 (qm y 1 + y 2 ) [ 2 ] q r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gjaaiIcacqWFRaVCcaaIPaGaaGypamaalaaabaGaamyCaiab=jd85naaBaaaleaacaaIYaaabeaakiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIPaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGae83kWlhaaaaa@60A2@ leads to required result. If we take y 1 =1, y 2 =2,q=0.5,m=0.5 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=jd85naaBaaaleaacaaIXaaabeaakiaai2dacaaIXaGaaGilaiab=jd85naaBaaaleaacaaIYaaabeaakiaai2dacaaIYaGaaGilaiaadghacaaI9aGaaGimaiaai6cacaaI1aGaaGilaiaad2gacaaI9aGaaGimaiaai6cacaaI1aaaaa@556D@ and α=0.5 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaGypaiaaicdacaaIUaGaaGynaaaa@3C21@ in (20), we get

| G 2 ( y 2 ,qm y 1 ) A( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) ϒ 1 |=0.188 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyCaiaad2gacqWFYaFEdaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0YaaSaaaeaacaWGbbGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcacaWGhbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiab=jd85naaBaaaleaacaaIYaaabeaakiaaiYcacaWGXbGaamyBaiab=jd85naaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaWGbbGaaGikaiaaigdacaaISaGaamyCaiaaiMcaaaGaeuO0de6aaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdGaaGypaiaaicdacaaIUaGaaGymaiaaiIdacaaI4aGaaGjcVlaayIW7caaMi8oaaa@79CF@

and

q( y 2 m y 1 )A( y 2 ,qm y 1 ) G 2 ( y 2 ,qm y 1 ) A(1,q) [ 1 y 2 (q y 2 +(1q)m y 1 ) ( A 1 (q)+ A 3 (q))+ 1 m y 1 2 ( A 2 (q)+ A 4 (q)) ]=3.27 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGXbGaaGikamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadgeacaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadEeadaahaaWcbeqaaiaaikdaaaGccaaIOaGae8NmWN3aaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadghacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadgeacaaIOaGaaGymaiaaiYcacaWGXbGaaGykaaaadaWadaqaauaabeqabeaaaeaadaWcaaqaaiaaigdaaeaacqWFYaFEdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiab=jd85naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiIcacaaIXaGaeyOeI0IaamyCaiaaiMcacaWGTbGae8NmWN3aaSbaaSqaaiaaigdaaeqaaOGaaGykaaaacaaIOaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamyCaiaaiMcacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaamyBaiab=jd85naaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccaaIOaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRiaadgeadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamyCaiaaiMcacaaIPaaaaaGaay5waiaaw2faaiaai2dacaaIZaGaaGOlaiaaikdacaaI3aaaaa@9B4C@

Thus, 0.1883.27. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaai6cacaaIXaGaaGioaiaaiIdacqGHKjYOcaaIZaGaaGOlaiaaikdacaaI3aGaaGOlaaaa@409A@

Conclusion

In the current study, we initially proved two quantum identities using the integration by parts method. Then, using these identities, we established some new Midpoint and Trapezoid type inequalities for differentiable (α, m) -convex functions, which was the main motivation of this paper. In upcoming directions, similar inequalities could be found for co-ordinated convex functions as well.

  1. Ali A, Gulshan G, Hussain R, Latif A, Muddassar M. Generalized inequalities of the type of Hermite Hadamard-Fejer with Quasi-Convex functions by way of k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@387A@ -Fractional derivative. J Comput Anal Appl. 2017;22:1208-1219. Available from: https://www.researchgate.net/publication/302795285_Generalized_Inequalities_of_the_type_of_Hermite-Hadamard-Fejer_with_Quasi-Convex_Functions_by_way_of_k-Fractional_Derivatives
  2. Dragomir SS,. Pearce CEM. Quasi-convex functions and Hadamards inequality.  Bull Austral Math Soc. 1998;57:377-385. Available from: https://doi.org/10.1017/S0004972700031786
  3. Hussain R, Ali A, Latif A, G Gulshan G. Some k-fractional associates of Hermite-Hadamard's inequality for quasi-convex functions and applications to special means.  Fractional Differ Calc. 2017;7:301-309. Available from: http://dx.doi.org/10.7153/fdc-2017-07-13
  4. Fink AM. Hadamard's inequality for log-concave functions.  Math Comut Model. 2000;32:625-629. Available from: https://www.sciepub.com/reference/173909
  5. Dragomir SS. On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan J Math. 2001;5(4):775-788. Available from: https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-5/issue-4/ON-THE-HADAMARDS-INEQULALITY-FOR-CONVEX-FUNCTIONS-ON-THE-CO/10.11650/twjm/1500574995.full
  6. Hussain R, Ali A,  Latif A, Gulshan G. Co-ordinated convex function of three variables and some analogues inequalities with applications.  J Comput Anal and Appl. 2021;29:505-517. Available from: https://www.researchgate.net/publication/342587589_CO-ORDINATED_CONVEX_FUNCTIONS_OF_THREE_VARIABLES_AND_SOME_ANALOGOUS_INEQUALITIES_WITH_APPLICATIONS
  7. Scan I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet J Math Stat. 2014; 43:935-942. Available from: https://dergipark.org.tr/tr/download/article-file/711773
  8. Niculescu PC. Convexity according to the geometric mean.  Math Inequal Appl. 2000;2:155-167. Available from: http://dx.doi.org/10.7153/mia-03-19
  9. QiF, Xi BY. Some integral inequalities of Simpson type for GA-convex functions.  Georgian Math J. 2013; 20:775-788. Available from: https://www.degruyter.com/document/doi/10.1515/gmj-2013-0043/html
  10. Mihesan VG. A generalization of the convexity. In: Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania. 1993. Available from: https://www.sciepub.com/reference/54446
  11. Bubeck S. Convex optimization Algorithms and complexity. Found Trends Mach Learn. 2015;8:231-357. Available from: https://doi.org/10.48550/arXiv.1405.4980
  12. Chang TS Jin XX, Luh PB, Miao XIYI. Large-scale convex optimal control problems time decomposition, incentive coordination and parallel algorithm.  IEEE T Automat. 1990; 35:108-114. Available from: file:///C:/Users/WEBTEAM/Downloads/LSOptimalControTsu-ShuanChang.pdf
  13. Fagbemigun BO, Mogbademu AA. Some classes of convex functions on time scales.  RGMIA Research ReportCollections. 2019; 22:1-12. Available from: https://rgmia.org/papers/v22/v22a13.pdf
  14. Alp N. Sarikaya MZ. Kunt M, İşcan İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci. 2018;30:193-203. Available from: https://doi.org/10.1016/j.jksus.2016.09.007
  15. Ernst T. The History of q-calculus and a New Method, Department of Mathematics, Uppsala University, Sweden, China. 2000. Available from: https://www.scribd.com/document/21401844/The-History-of-Q-calculus-and-a-New
  16. Kac V, Cheung P. Quantum Calculus, Springer. 2001.
  17. Benatti F, Fannes M, Floreanini R, Petritis D. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments. Springer Science and Business Media. 2010. Available from: https://link.springer.com/book/10.1007/978-3-642-11914-9
  18. Bokulich A, Jaeger G. Philosophy of Quantum Information Theory and Entaglement., Cambridge Uniersity Press. 2010.
  19. Jackson FH. On a -definite integrals. Quarterly. J Pure Appl Math. 1910;4:193-203.
  20. Al-Salam W. Some fractional -integrals and -derivatives, Proc. Edinburgh Math Soc. 1966; 15(2):135-140.
  21. Tariboon J, Ntouyas SK. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv Differ Equ. 2013;1-19. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/1687-1847-2013-282
  22. Bermudo S, Kórus P, Valdés JN. On -Hermite-Hadamard inequalities for general convex functions. Acta Math Hung. 2020;162:364-374.
  23. Ali MA, Budak H, Abbas M, Chu YM. Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second -derivatives. Adv Differ Equ. 2021; 2021:1-12. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03163-1
  24. Ali MA, Alp N, Budak H, Chu YM, Zhang Z. On some new quantum midpoint type inequalities for twice quantum differentiable convex functions. Open Math. 2021;9:427-439. Available from: http://dx.doi.org/10.1515/math-2021-0015
  25. Alp N, Sarikaya MZ. Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes. 2020; 20:341-356. Available from: https://www.emis.de/journals/AMEN/2020/AMEN-190629.pdf
  26. Budak H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones. 2021; 40:199-215. Available from: https://doi.org/10.22199/issn.0717-6279-2021-01-0013
  27. Budak H, Ali MA, Tarhanaci M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J Optim Theory Appl. 2020;186:899-910. Available from: https://link.springer.com/article/10.1007/s10957-020-01726-6
  28. Jhanthanam S, Tariboon J, Ntouyas SK, Nonlaopon K. On -Hermite-Hadamard inequalities for differentiable convex functions. Mathematics. 2019;7:632.
  29. Liu W, Hefeng Z. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J Appl Anal Comput. 2016; 7:501-522. Available from: https://www.mdpi.com/2227-7390/7/2/152#
  30. Noor MA, Noor KI, Awan MU. Some quantum estimates for Hermite-Hadamard inequalities. Appl Math Comput. 2015; 251:675-679. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0096300314016221
  31. Noor MA, Noor KI, Awan MU. Some quantum integral inequalities via preinvex functions. Appl Math Comput. 2015; 269:242–251. Available from: https://doi.org/10.1016/j.amc.2015.07.078
  32. Nwaeze ER, Tameru AM. New parameterized quantum integral inequalities via -quasiconvexity. Adv Differ Equ. 2019;2019:1-12. Available from: https://link.springer.com/article/10.1186/s13662-019-2358-z
  33. Khan MA, Noor M, Nwaeze ER, Chu YM. Quantum Hermite–Hadamard inequality by means of a Green function. Adv Differ Equ. 2020;2020:1-20. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-02559-3
  34. Budak H, Erden S, Ali MA. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math Meth Appl Sci. 2020; 44:378-390. Available from: https://doi.org/10.1002/mma.6742
  35. Ali MA, Budak H, Zhang Z, Yildrim H. Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus. Math Meth Appl Sci. 2021; 44:4515-4540. Available from: https://doi.org/10.1002/mma.7048
  36. Ali MA, Abbas M, Budak H, Agarwal P, Murtaza G, Chu YM. New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions. Adv Differ Equ. 2021;2021:1-21. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-021-03226-x
  37. Vivas-Cortez M, Ali MA, Kashuri A, Sial IB, Zhang Z. Some new Newton's type integral inequalities for coordinated convex functions in quantum calculus. Symmetry. 2020;12:1476. Available from: https://www.mdpi.com/2073-8994/12/9/1476
  38. Ali MA, Chu YM, Budak H, Akkurt A, Yildrim H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv Differ Equ. 2021; 2021:1-26. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03195-7
  39. Ali MA, Budak H, Akkurt A, Chu YM. Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus. Open Math. 2021;19:427-439. Available from: http://dx.doi.org/10.1515/math-2021-0020
  40. Budak H, Ali MA, Alp N, Chu YM. Quantum Ostrowski type integral inequalities. J Math Inequal. 2021.
  41. Sudsutad W, Ntouyas SK, Tariboon J. Quantum integral inequalities for convex functions. Journal of Mathematical Inequalities. 2015;9:781-793. Available from: https://www.researchgate.net/profile/Weerawat-Sudsutad-2/publication/281759795_Quantum_integral_inequalities_for_convex_functions/links/56e8497408aea51e7f3b39eb/Quantum-integral-inequalities-for-convex-functions.pdf
  42. Kirmaci S. Inequalities for differentiable functions and applications to special means of real numbers and to midpoint formula.  Appl Math Comput. 2014;147:137-146.
  43. Dragomir SS, Agarwal RP. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett. 1998;11:91-95. Available from: https://doi.org/10.1016/S0893-9659(98)00086-X
  44. Dragomir SS, Pearce CEM. Selected Topics on Hermite-Hadamard Inequalities and Applications., RGMIA Monographs, Victoria University. 2000. Available from: https://rgmia.org/papers/monographs/Master.pdf
  45. Ali MA, Budak H, Nanlaopon K, Abdullah Z. Simpson's and Newton's Type Inequalities for -convex functions via Quantum Calculus. Submitted to AIMS Mathematics.
  46. Pearce CEM, Peccaric J. Inequalities for differentiable functions with application to special means and quadrature formula.  Appl Math Lett. 2000;13: 51-55. Available from: https://doi.org/10.1016/S0893-9659(99)00164-0
  47. Rovelli C. Quantum Gravity (Cambridge Monograph On Math. Physics. 2004. Available from: https://doi.org/10.1017/CBO9780511755804
  48. Sengar RS, Sharmssssa M, Trivedi A. International Journal of Civil Engineering and Technology. 2015;6:34–44.
 


Article Alerts

Subscribe to our articles alerts and stay tuned.


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.



Help ?