The Riemann's Hypothesis, the Prime Numbers Theorem (PNT), and the Error
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

The Riemann's Hypothesis, the Prime Numbers Theorem (PNT), and the Error

Ing Mg Carlos A Correa*

Electronics Engineer, Master of Science in Computer Engineering, math enthusiast, The National University of San Juan, Argentina

*Corresponding author: Ing. Mg. Carlos A Correa, Electronics Engineer, Master of Science in Computer Engineering, math enthusiast, The National University of San Juan, Argentina, E-mail: carcorrea@hotmail.com.ar
Received: 22 July, 2024 | Accepted: 30 August, 2024 | Published: 31 August, 2024

Cite this as

Carlos A Correa IM. The Riemann's Hypothesis, the Prime Numbers Theorem (PNT), and the Error. Ann Math Phys. 2024;7(2):242-245. Available from: 10.17352/amp.000129

Copyright Licence

© 2024 Carlos A Correa IM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In this simple paper, a small refinement to the Prime Number Theorem (PNT) is proposed, which allows us to limit the error with which said theorem predicts the value of the Prime-counting function π(x); and, in this way, endorse the veracity of the Riemann Hypothesis.

Many people know that the Riemann Hypothesis is a difficult mathematical problem - even to understand - without a certain background in mathematics. Many techniques have been used, for more than 150 years, to try to solve it. Among them is the one that establishes that, if the Riemann hypothesis is true, then the error term that appears in the prime number theorem can be bounded in the best possible way. Specifically, Helge von Koch demonstrated in 1901 that it should be:

Π( x )=Li( x )+O( x lnx) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabfc6aqLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGmbGaamyAaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGpbGaaiikaKqbaoaakaaak8aabaqcLbsapeGaamiEaaWcbeaajugibiGacYgacaGGUbGaamiEaiaacMcaaaa@4C8B@

A refined variant of Koch's result, given by Lowell Schoenfeld in 1976, states that the Riemann hypothesis is equivalent to the following result:z

E< 1 8π x  ln(x), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadweacqGH8aapjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI4aGaaeiWdaaajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacaGGGcGaaeiBaiaab6gacaGGOaGaamiEaiaacMcacaGGSaaaaa@4637@ for all x ≥2657

In this work, we will make a small adjustment to the prime counting function π(x), which will allow us to limit the error with which the PNT predicts the value of π(x) to a value even smaller than that established by Lowell Schoenfeld.

1.1 Introduction

The history of mathematics is full of examples where conjectures were established based on intuition, or simply based on numerical research. An example of this, very relevant in this case, is the famous prime number theorem (PNT), initially formulated by Gauss in 1792 [1-6]. In this work, we will make a small adjustment to the prime counting function π(x), which not only improves the estimate of the number of primes up to x but will also allow us to limit the error with which the PNT predicts the value of π(x).

1.2 Previous concepts

The prime number theorem states that π( x ) x ln( x ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGHijYUjuaGdaWcaaGcpaqaaKqzGeWdbiaabIhaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaeiEaaGccaGLOaGaayzkaaaaaaaa@4735@ (1)

Where π (x) is the number of primes ​​smaller than x , and ln (x) is the natural logarithm of x.

1.3 New estimate for π(x)

At (1), we use x= n 2 +2n+1= (n+1) 2 ; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIhacqGH9aqpcaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHRaWkcaaIYaGaamOBaiabgUcaRiaaigdacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaapaGaai4oaaaa@47CC@ then is:

  π( (n+1) 2 ) n 2 +2n+1 ln( n 2 +2n+1 ) l= n 2 ln( (n+1) 2 ) +  2n+1 ln( (n+1) 2 ) ; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaGGGcGaeqiWdaxcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaeyisISBcfa4aaSaaaOWdaeaajugib8qacaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHRaWkcaaIYaGaamOBaiabgUcaRiaaigdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaGaey4kaSIaaGOmaiaad6gacqGHRaWkcaaIXaaakiaawIcacaGLPaaaaaqcLbsacaWGSbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacqGHRaWkcaqGGcqcfa4aaSaaaOWdaeaajugib8qacaaIYaGaamOBaiabgUcaRiaaigdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacaGG7aaaaa@81A2@ where n 2 ln( (n+1) 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@4603@ is: n 2 ln( (n+1) 2 ) = n 2 2ln( (n+1) ) = n 2 . n ln( n+1 )   n 2 .  n ln( n )  π( n 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaak8aabaqcLbsapeGaaGOmaiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaakiaawIcacaGLPaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qacaaIYaaaaiaac6cajuaGdaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaajugibiaacckacqGHijYUjuaGdaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qacaaIYaaaaiaac6cacaqGGaqcfa4aaSaaaOWdaeaajugib8qacaWGUbaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaad6gaaOGaayjkaiaawMcaaaaajugibiaacckacqGHijYUcqaHapaCjuaGdaqadaGcpaqaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaa@82AB@

In 1896, de la Vallée Poussin [7] showed that x/(ln x-a) provides a better approximation to π(x) than x/(ln x), and also showed that using a=1 is the best option. So, we replace, in the previous equation, n ln( n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaaaaa@4060@ by n ln( n+11 )  π( n ),  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgUcaRiaaigdacqGHsislcaaIXaaakiaawIcacaGLPaaaaaqcLbsacaqGGcGaeyisISRaeqiWdaxcfa4aaeWaaOWdaeaajugib8qacaWGUbaakiaawIcacaGLPaaajugibiaacYcacaqGGcaaaa@4D56@ being n 2 .π( n )π( n 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaad6gaaOWdaeaajugib8qacaaIYaaaaiaac6cacqaHapaCjuaGdaqadaGcpaqaaKqzGeWdbiaad6gaaOGaayjkaiaawMcaaKqzGeGaeyisISRaeqiWdaxcfa4aaeWaaOWdaeaajugib8qacaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaa@49F8@

therefore, it is π (n+1) 2 π( n 2 )+ 2n+1 ln( (n+1) 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWjaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaaaa@5961@ (2)

Before using expression (2), to address the issue of the error with which the PNT predicts the value of π(x), we are going to show how said expression (2) can be used to improve the estimate of the number of primes up to x, given by the PNT.

We start from n=2, with Π(22)=2 (primes 2 and 3)

π( 3 2 )π( 2 2 )+ 2x2+1  ln( 3 2 ) = 2+  5  2ln3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaaG4maKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaaGOmaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaadIhacaaIYaGaey4kaSIaaGymaiaacckaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaG4maKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsapaGaeyypa0JaaiiOaiaabkdacqGHRaWkpeGaaiiOaKqbaoaalaaak8aabaqcLbsapeGaaGynaiaacckaaOWdaeaajugib8qacaaIYaGaciiBaiaac6gacaaIZaaaaaaa@6505@

π( 4 2 )π( 3 2 )+ 2x3+1  ln( 4 2 ) =2+  5  2ln3 + 7  2 ln( 4 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaaGinaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaaG4maKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaadIhacaaIZaGaey4kaSIaaGymaiaacckaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaGinaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsapaGaeyypa0JaaeOmaiabgUcaR8qacaGGGcqcfa4aaSaaaOWdaeaajugib8qacaaI1aGaaiiOaaGcpaqaaKqzGeWdbiaaikdaciGGSbGaaiOBaiaaiodaaaGaey4kaSscfa4aaSaaaOWdaeaajugib8qacaaI3aGaaeiOaaGcpaqaaKqzGeWdbiaaikdacaqGGcGaaeiBaiaab6gajuaGdaqadaGcpaqaaKqzGeWdbiaaisdaaOGaayjkaiaawMcaaaaaaaa@700F@

π( 5 2 )π( 4 2 )+ 2x4+1  ln( 5 2 ) =2+  5  2ln3 + 7  2 ln( 4 ) +  9  2 ln( 5 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaaGynaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaaGinaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaadIhacaaI0aGaey4kaSIaaGymaiaacckaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaGynaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacqGH9aqppaGaaeOmaiabgUcaR8qacaGGGcqcfa4aaSaaaOWdaeaajugib8qacaaI1aGaaiiOaaGcpaqaaKqzGeWdbiaaikdaciGGSbGaaiOBaiaaiodaaaWdaiabgUcaRKqba+qadaWcaaGcpaqaaKqzGeWdbiaaiEdacaqGGcaak8aabaqcLbsapeGaaGOmaiaabckacaqGSbGaaeOBaKqbaoaabmaak8aabaqcLbsapeGaaGinaaGccaGLOaGaayzkaaaaaKqzGeWdaiabgUcaR8qacaGGGcqcfa4aaSaaaOWdaeaajugib8qacaaI5aGaaeiOaaGcpaqaaKqzGeWdbiaaikdacaqGGcGaaeiBaiaab6gajuaGdaqadaGcpaqaaKqzGeWdbiaaiwdaaOGaayjkaiaawMcaaaaaaaa@7E31@

.

.

.

π( (n+1) 2 )π( n 2 )+ 2n+1  ln( n+1 ) 2 ) =2+  5  2ln3 + 7  2 ln( 4 ) +  9  2 ln( 5 ) +.....+ 2n+1  2 ln( n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaGaaiiOaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaKqzGeWdaiabg2da9iaabkdacqGHRaWkpeGaaiiOaKqbaoaalaaak8aabaqcLbsapeGaaGynaiaacckaaOWdaeaajugib8qacaaIYaGaciiBaiaac6gacaaIZaaaaiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaG4naiaabckaaOWdaeaajugib8qacaaIYaGaaeiOaiaabYgacaqGUbqcfa4aaeWaaOWdaeaajugib8qacaaI0aaakiaawIcacaGLPaaaaaqcLbsacqGHRaWkcaGGGcqcfa4aaSaaaOWdaeaajugib8qacaaI5aGaaeiOaaGcpaqaaKqzGeWdbiaaikdacaqGGcGaaeiBaiaab6gajuaGdaqadaGcpaqaaKqzGeWdbiaaiwdaaOGaayjkaiaawMcaaaaajugibiabgUcaRiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaey4kaSscfa4aaSaaaOWdaeaajugib8qacaaIYaGaaeOBaiabgUcaRiaaigdacaqGGcaak8aabaqcLbsapeGaaGOmaiaabckacaqGSbGaaeOBaKqbaoaabmaak8aabaqcLbsapeGaaeOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaaaaa@9876@

π( n 2 )2+  1  2   i=3 n 2i1 ln(i)       (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgIKi7kaaikdacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaacckacaaIXaGaaiiOaaGcpaqaaKqzGeWdbiaaikdaaaGaaiiOaKqbaoaawahakeqal8aabaaabaaaneaajuaGpeWaaabCaeaadaWcaaWdaeaajugib8qacaaIYaGaamyAaiabgkHiTiaaigdaaKqba+aabaqcLbsapeGaaeiBaiaab6gacaGGOaGaamyAaiaacMcaaaaajuaGbaqcLbsacaWGPbGaeyypa0JaaG4maaqcfayaaKqzGeGaamOBaaGaeyyeIuoaaaqcfaOaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@62F1@

If in equation (2) we replace n2 by xwe get:

π( x+2 x +1 )π( x )+ 2x+1 ln( x+2 x +1 )       (2.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaiabgUcaRiaaikdajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacqGHRaWkcaaIXaaakiaawIcacaGLPaaajugibiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaaikdacqGHAiI1caWG4bGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4bGaey4kaSIaaGOmaKqbaoaakaaak8aabaqcLbsapeGaamiEaaWcbeaajugibiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqGXaGaaeykaaaa@6655@

Or generalizing, we could write:

π( x+Δx )π( x )+ Δx ln( x+Δx )        (2.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaiabgUcaRiabfs5aejaadIhaaOGaayjkaiaawMcaaKqzGeGaeyisISRaeqiWdaxcfa4aaeWaaOWdaeaajugib8qacaWG4baakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaeuiLdqKaamiEaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4bGaey4kaSIaeuiLdqKaamiEaaGccaGLOaGaayzkaaaaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqGYaGaaeykaaaa@5EA2@

If x is not a square number, then the expression (3) will be:

π( x )2+  1  2   i=3 x 2i1 ln( i ) +  x x 2 ln( x )            (3.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGHijYUcaaIYaGaey4kaSscfa4aaSaaaOWdaeaajugib8qacaGGGcGaaGymaiaacckaaOWdaeaajugib8qacaaIYaaaaiaacckajuaGdaGfWbGcbeWcpaqaaaqaaaqdbaqcfa4dbmaaqahabaWaaSaaa8aabaqcLbsapeGaaGOmaiaadMgacqGHsislcaaIXaaajuaGpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaa8aabaqcLbsapeGaamyAaaqcfaOaayjkaiaawMcaaaaajugibiabgUcaRiaacckajuaGdaWcaaWdaeaajugib8qacaWG4bGaeyOeI0scfa4aayWaaeaadaGcaaWdaeaajugib8qacaWG4baajuaGbeaaaiaawcp+caGL7JpapaWaaWbaaeqabaqcLbsapeGaaGOmaaaaaKqba+aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaWdaeaajugib8qacaWG4baajuaGcaGLOaGaayzkaaaaaKqzGeGaaeiOaiaacckacaGGGcGaaiiOaaqcfayaaKqzGeGaamyAaiabg2da9iaaiodaaKqbagaadaGcaaWdaeaajugib8qacaWG4baajuaGbeaaaKqzGeGaeyyeIuoaaaGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabMcaaaa@8156@

The actual values of π(x), the values of π(x) estimated with the PNT, and with equation (3), and the relative error of (3), are shown, for various values of x, in the following table 1.

It should be noted that in this work we have not modified the PNT but rather the way in which we use it. For example, to apply it to a value X, we do not use X/ln(X) directly, but we arrive at X by applying said theorem several times ( x MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgQHiwlaadIhaaaa@393C@ -1 times) as indicated by equation (3); or in a single step - knowing the value of π( ( n 2 ) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@408F@ - to find ( π( (n+1) 2 ) )  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaqadaGcpaqaaKqzGeWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiaacckaaaa@4538@ as indicated by equation (2).

Now we are going to address the issue of the error with which the PNT approximates the value of π(x); we focus on expression (2).

π (n+1) 2 π( n 2 )+ 2n+1 ln( (n+1) 2 )      (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWjaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaiabgIKi7kabec8aWLqbaoaabmaak8aabaqcLbsapeGaamOBaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaaaa@5F2A@

  • We will assume that between n2 y (n+1)2 equation (2) will approximate the number of primes with the greatest possible error. This can happeCase 1: when between n2 and (n+1)2 the density of primes is the minimum possible.
  • Case 2: when between n2 and (n+1)2 the density of primes is the maximum possible.

Case 1:

Legendre's conjecture [8], proposed by Adrien-Marie Legendre states that there is always at least one prime number between n2 and (n+1)2.

Equation (2) estimates that between n2 and (n+1)2 there are 2n+1 ln( (n+1) 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@4637@ primes, therefore, when the density of primes is the minimum possible the error will be:

Ε=  2n+1 ln( (n+1) 2 ) 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHvoqrcqGH9aqpqaaaaaaaaaWdbiaacckajuaGdaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaajugibiabgkHiTiaaigdaaaa@4C8F@

Case 2:

Equation (2) estimates that π( n 2 +2n+1)π( n 2 )  2n+1 ln( (n+1) 2 )  =  1 2 2n+1 ln( n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWjaacIcacaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaapaGaey4kaSYdbiaaikdacaWGUbGaey4kaSIaaGymaiaacMcacqGHsislcqaHapaCjuaGdaqadaGcpaqaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqGHijYUcaqGGcqcfa4aaSaaaOWdaeaajugib8qacaaIYaGaamOBaiabgUcaRiaaigdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacaGGGcGaeyypa0JaaiiOaKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaqcfa4aaSaaaOWdaeaajugib8qacaaIYaGaamOBaiabgUcaRiaaigdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaaaaa@7148@

But, now assuming that between n2 and (n+1)2 the density of primes will be the maximum possible, we double the previous result supposing that:

π( n 2 +2n+1)π( n 2 ) 2( 1 2 2n+1 ln( n+1 ) )= 2n+1 ln( n+1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWjaacIcacaWGUbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaapaGaey4kaSYdbiaaikdacaWGUbGaey4kaSIaaGymaiaacMcacqGHsislcqaHapaCjuaGdaqadaGcpaqaaKqzGeWdbiaad6gajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqGHijYUcaqGGcWdaiaabkdacaGGOaqcfa4dbmaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaqcfa4aaSaaaOWdaeaajugib8qacaaIYaGaamOBaiabgUcaRiaaigdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaajugibiaacMcacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWGUbGaey4kaSIaaGymaaGccaGLOaGaayzkaaaaaaaa@6DAF@

However, 2n+1 ln( n+1 ) > 2n+1 ln( 2n+1 ) ; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWGUbGaey4kaSIaaGymaaGccaGLOaGaayzkaaaaaKqzGeWdaiabg6da+Kqba+qadaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaaIYaGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaaaajugibiaacUdaaaa@5320@ the latter being the estimate for made by the PNT, taking those places from the origin of coordinates.

Therefore, the maximum density of primes assumed between n2 and (n+1)2, exceeds reality, since unlike what happens from the origin, after n2 all primes ≤ n appear spreading their multiples in the gap given by 2n+1. So, the error, in case 2, will be less than the additional of 1 2 2n+1 ln( n+1 ) = 2n+1 ln( (n+1) 2 ) . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIYaaaaKqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHRaWkcaaIXaaakiaawIcacaGLPaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaikdacaWGUbGaey4kaSIaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaajugibiaac6caaaa@5939@

Now, unifying the treatment of cases 1 and 2, we say that the error in the counting of primes - approximated by the PNT (using equation (2))- is, in absolute value, the following:

Ε 2n+1 ln( (n+1) 2 ) 1       (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHvoqrcqGHKjYOjuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaKqzGeGaeyOeI0IaaGymaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@529D@

On the other hand, we know that Helge von Koch demonstrated in 1901 that, if and only if the Riemann hypothesis holds, it is: Π( x )=Li( x )+O( x lnx) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabfc6aqLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGmbGaamyAaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGpbGaaiikaKqbaoaakaaak8aabaqcLbsapeGaamiEaaWcbeaajugibiGacYgacaGGUbGaamiEaiaacMcaaaa@4C8B@

A refined variant of Koch's result, given by Lowell Schoenfeld in 1976, states that the Riemann hypothesis is equivalent to the following result:

E< 1 8π x  ln(x), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadweacqGH8aapjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI4aGaaeiWdaaajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacaGGGcGaaeiBaiaab6gacaGGOaGaamiEaiaacMcacaGGSaaaaa@4637@ for each x ≥ 2657 (5)

In equation (4) we make Ε 2n+1 ln( (n+1) 2 ) 1= 2n ln( (n+1) 2 )  +  1 ln( (n+1) 2 )  1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHvoqrcqGHKjYOjuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGOmaiaad6gacqGHRaWkcaaIXaaak8aabaqcLbsapeGaciiBaiaac6gajuaGdaqadaGcpaqaaKqzGeWdbiaacIcacaWGUbGaey4kaSIaaGymaiaacMcajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaaaaKqzGeGaeyOeI0IaaGymaiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacaGGGcGaey4kaSIaaiiOaKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaOGaayjkaiaawMcaaaaajugibiaacckacqGHsislcaaIXaaaaa@7050@ ∴ is:

In equation (4) we make

Ε< 2n ln( (n+1) 2 ) , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHvoqrqaaaaaaaaaWdbiabgYda8Kqbaoaalaaak8aabaqcLbsapeGaaGOmaiaad6gaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacaGGSaaaaa@48D4@ here we make x= (n+1) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIhacqGH9aqpcaGGOaGaamOBaiabgUcaRiaaigdacaGGPaqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaaaaa@3EB2@ ∴ is: n+1= x  2n=2 x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaad6gacqGHRaWkcaaIXaGaeyypa0tcfa4aaOaaaOWdaeaajugib8qacaWG4baaleqaaKqzGeGaaiiOa8aacqGHshI3caaIYaGaamOBaiabg2da9iaaikdajuaGpeWaaOaaaOWdaeaajugib8qacaWG4baaleqaaKqzGeGaeyOeI0IaaGOmaaaa@48CB@

Ε< 2 x 2 ln( x )  Ε 2 x ln( x )         (4.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHvoqrcqGH8aapjuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGOmaKqbaoaakaaak8aabaqcLbsapeGaamiEaaWcbeaajugibiabgkHiTiaaikdaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaaaaKqzGeGaaiiOa8aacqGHshI3cqqHvoqrjuaGpeWaaSaaaOWdaeaajugib8qacaaIYaqcfa4aaOaaaOWdaeaajugib8qacaWG4baaleqaaaGcpaqaaKqzGeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4baakiaawIcacaGLPaaaaaqcLbsacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOlaiaabgdacaqGPaaaaa@603B@

Finally, we compare (4.1) and (5)

 Ε< 2 x ln( x )  < 1 8π x  ln(x)  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckapaGaeuyLdu0dbiabgYda8Kqbaoaalaaak8aabaqcLbsapeGaaGOmaKqbaoaakaaak8aabaqcLbsapeGaamiEaaWcbeaaaOWdaeaajugib8qaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaaaaKqzGeGaaeiOaiaabYdajuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI4aGaaeiWdaaajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacaGGGcGaaeiBaiaab6gacaGGOaGaamiEaiaacMcacaGGGcaaaa@55DF@

So, we have that:

x  < 1 16π ln( x )ln( x ) x 1 16π ln( x )ln( x )>1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8qadaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacaqGGcGaeyipaWtcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGymaiaaiAdacaqGapaaaiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4baakiaawIcacaGLPaaajugibiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4baakiaawIcacaGLPaaajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsapaGaeyO0H4Dcfa4dbmaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaigdacaaI2aGaaeiWdaaaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsaciGGSbGaaiOBaKqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacqGH+aGpcaaIXaGaaiilaaaa@66AB@

Therefore, it is: ln( x )> 16π =4 π x>1200 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajugib8qacaWG4baakiaawIcacaGLPaaajugibiabg6da+Kqbaoaakaaak8aabaqcLbsapeGaaGymaiaaiAdacaqGapaaleqaaKqzGeWdaiabg2da9iaaisdajuaGpeWaaOaaaOWdaeaajugib8qacaqGapaaleqaaKqzGeWdaiabgkDiE=qacaWG4bGaeyOpa4JaaGymaiaaikdacaaIWaGaaGimaaaa@4F28@

This means that the statement made by Lowell Schoenfeld in 1976, that the Riemann hypothesis is equivalent to proving that PNT approximates the value of π( x )  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabec8aWLqbaoaabmaak8aabaqcLbsapeGaamiEaaGccaGLOaGaayzkaaqcLbsacaGGGcaaaa@3DE7@ with an error E< 1 8π x  ln(x), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadweacqGH8aapjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI4aGaaeiWdaaajuaGdaGcaaGcpaqaaKqzGeWdbiaadIhaaSqabaqcLbsacaGGGcGaaeiBaiaab6gacaGGOaGaamiEaiaacMcacaGGSaaaaa@4637@ for all x≥2657, it is satisfied since x ≥1200. Thus, this work reinforces and shows the veracity of the RH.

Discussion and conclusion

According to the Riemann hypothesis, the density of primes decreases according to the prime number theorem (PNT). The PNT determines the average distribution of the primes, and the Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

This work aims to prove that the Riemann Hypothesis (RH) is true, and this would have far-reaching consequences for number theory and the use of primes in cryptography. For example (assuming RH), the Miller–Rabin primality test [9], is guaranteed to run in polynomial time.

  1. Petersen BE. Prime number theorem. 1996. Available from: https://www.math.ucdavis.edu/~tracy/courses/math205A/PNT_Petersen.pdf
  2. Bombieri E. Problems of the millennium: the Riemann hypothesis. 2000. Available from: https://www.claymath.org/wp-content/uploads/2022/05/riemann.pdf
  3. Titchmarsh EC, Heath-Brown DR. The theory of the Riemann zeta-function. 1986. Clarendon Press, University of Oxford. Available from: https://sites.math.rutgers.edu/~zeilberg/EM18/TitchmarshZeta.pdf
  4. von Koch H. Contribution à la théorie des nombres premiers. Acta Math. 1910;33:293–320. Available from: https://doi.org/10.1007/BF02393216
  5. Schoenfeld L. Available from: https://academia-lab.com/enciclopedia/lowell-schoenfeld/
  6. Goldstein LJ. A history of the prime number theorem. Am Math Monthly. 1973;80(6):599–615. Available from: https://www.math.fsu.edu/~quine/ANT/2010%20Goldstein.pdf
  7. De la Vallée Poussin. Cap III: The theorem of Hadamard and de la Vallée Poussin, and its consequences. Available from: https://sites.math.rutgers.edu/~zeilberg/EM18/TitchmarshZeta.pdf
  8. Correa C. Gap between consecutive coprimes and gap between consecutive primes. Available from: https://www.academia.edu/23707567/Gap_between_consecutive_coprimes_and_Gapbetween_consecutive_primes
  9. Narayan S, Corwin D. Improving the speed and accuracy of the Miller-Rabin primality test. MIT Primes USA. 2015. Available from: https://math.mit.edu/research/highschool/primes/materials/2014/Narayanan.pdf
 

Help ?