
277

Citation: Chiappinelli R. Rayleigh Quotient and Surjectivity of Nonlinear Operators in Hilbert space. Ann Math Phys. 2024;7(3):277-278. 
Available from: https://dx.doi.org/10.17352/amp.000132

https://dx.doi.org/10.17352/ampDOI: 

M
A

T
H

E
M

A
T

IC
S

 A
N

D 
P

H
Y

S
IC

S
 G

R
O

U
P

2689-7636ISSN: 

Abstract

We consider continuous operators acting in a real Hilbert space and indicate conditions ensuring their continuous invertibility and/or surjectivity. In the case of 
bounded linear operators, these facts are well-known from basic Functional Analysis. The objective of this work is to indicate how similar properties can be proved 
also when the operators are not necessarily linear, using as a main tool their Rayleigh quotient and especially its lower and upper bound. In particular, we focus our 
attention on gradient operators and show a quantitative criterion that ensures their surjectivity through the positivity of an additional constant related to the measure of 
noncompactness. 
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This short work does not contain any detailed discussion or 
proof, but merely a few statements and comments concerning 
some properties of nonlinear (= not necessarily linear) operators 
acting in a Hilbert space; it aims at inviting people interested in 
the subject to further study the matter. References for proofs 
of the results are given throughout. Thus let H be a real Hilbert 

space with scalar product denoted .,.   and corresponding 

norm = ,x x x   . If F is any map of H into itself, it makes 

sense to defi ne its Rayleigh quotient by the formula 

( ),  ( , 0).2
F x x x H x
x

   
 

                   (1)

If we suppose in addition that F is continuous and such that 

( )F x A x                                  (2)

for some A≥0 and all xH, then its Rayleigh quotient is a 
bounded continuous real function, and we look in particular at 
the numbers 

( ), ( ),( ) = ,  ( ) = supinf 2 20 0
F x x F x xm F M F

x xx x
   

    
               (3)

which are quite useful in the study of the spectral properties of 
F. Indeed it is immediate that if  is an eigenvalue of F (meaning 

that ( ) =0F x x  for some x≠0), then ( ) ( )m F M F  . Moreover 

in the special case that F=T, a bounded linear operator, then the 
whole spectrum (T) of T satisfi es the inclusion 

( ) [ ( ), ( )]T m T M T                    (4)

as follows for instance using the Lax-Milgram Lemma (see, 
e.g., [1]). More can be said if T is in addition self-adjoint and/or 
compact; and quite surprisingly, similar interesting properties 
can be drawn also when T is replaced by a nonlinear operator 
F acting in H. For instance, if F is Lipschitz continuous and 
satisfi es the condition 

( ) ( ),( ) > 0,inf0 2
F x F y x ym F

x y x y
   

                   (5)

then F is a Lipeomorphism (in the language of [2]), in the sense 
that it is a Lipschitz homeomorphism of H onto itself with 
Lipschitz inverse F-1: as for surjectivity, this follows easily from 
the Minty-Browder Theorem (see, e.g., [1]).
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Something can be said also in case F, rather than being 
Lipschitzian, satisfi es the weaker condition (2): for if we put 

( )( ) = inf
0
F xb F
xx

 
 

 and 

( ) ={ : ( ) = 0}F b F Ib                   (6)

(a sort of ``approximate point spectrum" of F), then we have 

( ) [ ( ), ( )]F m F M Fb  . Finally, some surjectivity properties of F 

can be derived through the numbers m(F), M(F) at least in the 
case F is a gradient operator, i.e., is such that 

( ), = ( )   ( , )F x y f x y x y H                 (7)

for some differentiable functional :f H  ; here f′(x) denotes 
the (Fréchet) derivative of f at the point xH. Indeed using the 
Ekeland Variational Principle (see, e.g., [3]) we can show that 
for such an operator, the conditions 

m(F)>0 and (F)>0                    (8)

where 

( ( ))( ) = inf{ : , bounded, ( ) > 0}
( )
F AF A E A A
A

 


               (9)

and (A) denotes the measure of non-compactness of the 
bounded set AH, ensure that F is surjective. This implies in 
particular the surjectivity of F-l when 

[ ( ), ( )] ( ),m F M F F               (10)

where ( ) { : ( ) = 0}F F I       .

Proofs of these statements can be found in [4-6], while we 
refer to [2] for a general introduction to the subject and also as 
a reference for further study. 

Communication was held at the Conference on Topological 
Methods for Nonlinear Analysis and Dynamical Systems 
(Firenze, 27-28 September 2024) organized in honor of the 
retirement of Professor Patrizia Pera. 
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