Simpson Type Estimations for Convex Functions via Quantum Calculus
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Simpson Type Estimations for Convex Functions via Quantum Calculus

Samet Erden1*, Necmettin Alp2 and Sabah Iftikhar3

1Department of Mathematics, Bartin University, Bartin, Turkey
2Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
3Department of Mathematics, Xiamen University Malaysia, Malaysia, Pakistan

*Corresponding authors: Samet Erden, Department of Mathematics, Bartin University, Bartin, Turkey, E-mail: erdensmt@gmail.com
Received: 01 October, 2024 | Accepted: 14 October, 2024 | Published: 15 October, 2024
Keywords: q -integral inequalities, q -derivative, Convex functions, Simpson's inequalities

Cite this as

Erden S, Alp N, Iftikhar S. Simpson Type Estimations for Convex Functions via Quantum Calculus. Ann Math Phys. 2024;7(3):284-291. Available from: 10.17352/amp.000134

Copyright Licence

© 2024 Erden S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

We first establish a new identity including quantum integrals and quantum numbers via q -differentiable functions. After that, with the help of this equality, a Simpson-type inequality for functions whose quantum derivatives in modulus are convex is derived, and some new inequalities for powers of quantum derivatives in absolute value are provided. It is also discussed how results come out in the case when q approaches 1.

Mathematics Subject Classification: 26D15, 26D10, 26A51, 34A08.

Introduction

Simpson's rules (Thomas Simpson 1710-1761) are well-known methods in numerical analysis for the purpose of numerical integration and the numerical approximation of definite integrals. Two famous Simpson's rules are known in the literature, and one of them is the following estimation known as Simpson's inequality:

Theorem 1 Suppose that χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoamaadmaabaGaeqyWdiNaaGilaiabeo8aZbGaay5waiaaw2faaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CD5@ is a four times continuously differentiable mapping on (ρ, σ), and let χ ( 4 ) = sup ϰ( m,n ) | χ ( 4 ) (ϰ) |<. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaajugibiabeE8aJPWaaWbaaSqabeaakmaabmaaleaajugibiaaisdaaSGaayjkaiaawMcaaaaaaOGaayzcSlaawQa7amaaBaaaleaajugibiabg6HiLcWcbeaajugibiaai2dakmaaxababaqcLbsaciGGZbGaaiyDaiaacchaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+cqGHiiIZkmaabmaaleaajugibiaad2gacaaISaGaamOBaaWccaGLOaGaayzkaaaabeaakmaaemaabaqcLbsacqaHhpWykmaaCaaaleqabaGcdaqadaWcbaqcLbsacaaI0aaaliaawIcacaGLPaaaaaqcLbsacaaIOaGae8h8dKVaaGykaaGccaGLhWUaayjcSdqcLbsacaaI8aGaeyOhIuQaaGOlaaaa@6B5C@  Then, one has the inequality

| 1 3 [ χ(ρ)+χ(σ) 2 +2χ( ρ+σ 2 ) ] 1 σρ ρ σ χ(ϰ)dϰ | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIZaaaaOWaamWaaeaadaWcaaqaaKqzGeGaeq4XdmMaaGikaiabeg8aYjaaiMcacqGHRaWkcqaHhpWycaaIOaGaeq4WdmNaaGykaaGcbaqcLbsacaaIYaaaaiabgUcaRiaaikdacqaHhpWykmaabmaabaWaaSaaaeaajugibiabeg8aYjabgUcaRiabeo8aZbGcbaqcLbsacaaIYaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaajugibiabeo8aZjabgkHiTiabeg8aYbaakmaapedabeWcbaqcLbsacqaHbpGCaSqaaKqzGeGaeq4WdmhacqGHRiI8aiabeE8aJjaaiIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5laaiMcacaWGKbGae8h8dKpakiaawEa7caGLiWoaaaa@78E7@

1 2880 χ ( 4 ) ( σρ ) 4 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHKjYOkmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdacaaI4aGaaGioaiaaicdaaaGcdaqbdaqaaKqzGeGaeq4XdmMcdaahaaWcbeqaaOWaaeWaaSqaaKqzGeGaaGinaaWccaGLOaGaayzkaaaaaaGccaGLjWUaayPcSdWaaSbaaSqaaKqzGeGaeyOhIukaleqaaOWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaaisdaaaGaaGOlaaaa@52F2@

Simpson's inequalities have been extensively studied by numerous researchers due to their wide range of applications in various fields of mathematics. Simpson's inequalities for different classes of functions have been studied, but one can find many inequality papers in the literature based on convex functions since convex functions are the basis of Simpson's inequality for integrals. For example, Alomari, et al. introduced some inequalities of Simpson's type based on functions whose absolute value of the first derivative is s-convex and concave in [1]. New inequalities of Simpson type for functions of bounded variation and their application to quadrature formulae in Numerical Analysis are given by Dragomir, et al. in [2]. In [3], Sarıkaya, et al. generalized the inequalities based on s-convex functions given by Alomari. In [4], Sarıkaay, et al. derived recent inequalities of Simpson type involving local fractional integrals for generalized convex functions are derived. What's more, An inequality of the Simpson type for an n-times continuously differentiable mapping is given by Liu in [5]. In addition to the references mentioned here, there are many articles on Simpson's inequality in the literature. Interested readers can find papers on Simpson-type inequalities in the literature for any class of function.

On the other hand, many studies have recently been carried out in the field of q -analysis, starting with Euler due to the high demand for mathematics that models quantum computing q -calculus appeared as a connection between mathematics and physics. It has a lot of applications in different mathematical areas such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions, and other sciences quantum theory, mechanics, and the theory of relativity [6-12]. Apparently, Euler was the founder of this branch of mathematics, by using the parameter q in Newton's work of infinite series. Later, Jackson was the first to develop q -calculus that was known without limits calculus in a systematic way [9]. In 1908-1909, Jackson defined the general q -integral and q -difference operator [11]. In 1969, Agarwal described the q -fractional derivative for the first time [13]. In 1966-1967 Al-Salam introduced a q -analogue of the Riemann-Liouville fractional integral operator and q-fractional integral operator [14]. In 2004, Rajkovic gave a definition of the Riemann-type q -integral which was generalized of Jackson q-integral. In 2013, Tariboon introduced ρ D q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamiraOWaaSbaaSqaaKqzGeGaamyCaaWcbeaaaaa@3DA8@ -difference operator [15].

Many integral inequalities well known in classical analysis such as Hölder inequality, Hermite-Hadamard inequality, Ostrowski inequality, Cauchy-Bunyakovsky-Schwarz, Gruss, Gruss-Cebysev, and other integral inequalities have been proved and applied for q -calculus using classical convexity. For illustrate, Alp, et al. proved The fundamental q -Hermite–Hadamard inequality, some new q -Hermite–Hadamard inequalities, and generalized q -Hermite–Hadamard inequality for convex and quasi-convex functions in [16]. In addition, Noor, et al. investigated some new integral inequalities including q -integrals related to Hermite-Hadamard and Ostrowski-type integral inequalities by using different classes of mappings [17-19]. In [20], via newly defined quantum integrals, Simpson and Newton-type inequalities for convex functions are established by Budak, et al.

In light of all these studies, Simpson-type inequalities involving quantum integrals for functions whose absolute value of the first derivative is convex will be analyzed in this work. Actually, Tunç, et al. [21] obtained Simpson's type quantum integral inequalities. Unfortunately, there are many mistakes in the proofs. For example, in Lemma 4, Tunç found the equality

0 1 2 ( 1τ )| qτ 1 6 | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipakmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaadaabdaqaaKqzGeGaamyCaiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOGaay5bSlaawIa7aKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaaaa@55E9@

= 0 1 2 | qτ 1 6 | 0 d q τ 0 1 2 τ| qτ 1 6 | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWdXbqabSqaaKqzGeGaaGimaaWcbaGcdaWcaaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaaacqGHRiI8aOWaaqWaaeaajugibiaadghacqaHepaDcqGHsislkmaalaaabaqcLbsacaaIXaaakeaajugibiaaiAdaaaaakiaawEa7caGLiWoajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaiabgkHiTOWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipacqaHepaDkmaaemaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaaGccaGLhWUaayjcSdqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baaaaa@6CCC@

= 0 1 6q ( qτ 1 6 ) 0 d q τ + 1 6q 1 2 ( 1 6 qτ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWdXbqabSqaaKqzGeGaaGimaaWcbaGcdaWcaaWcbaqcLbsacaaIXaaaleaajugibiaaiAdacaWGXbaaaaGaey4kIipakmaabmaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaaGccaGLOaGaayzkaaqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baacqGHRaWkkmaapehabeWcbaGcdaWcaaWcbaqcLbsacaaIXaaaleaajugibiaaiAdacaWGXbaaaaWcbaGcdaWcaaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaaacqGHRiI8aOWaaeWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaiabgkHiTiaadghacqaHepaDaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaaaa@6AA1@

( 0 1 6q τ( qτ 1 6 ) 0 d q τ + 1 6q 1 2 τ( 1 6 qτ ) 0 d q τ ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsislkmaabmaabaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaiabgUIiYdGaeqiXdqNcdaqadaqaaKqzGeGaamyCaiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaey4kaSIcdaWdXbqabSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipacqaHepaDkmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaaGccaGLOaGaayzkaaqcLbsacaaIUaaaaa@712B@

Here, for q ∈(0, 1), 1 6q 1 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaiaadghaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFWjIKkmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGOlaaaa@4A6A@ For instance, q= 1 6 1 1 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXbGaaGypaOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaacqGHsgIRcaaIXaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFWjIKkmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGOlaaaa@4E72@ So, the proof of Lemma 4 is not correct. Lemma 5 also has the same errors. On the other hand, since Lemma 4 and Lemma 5 are used in the proof of Theorem 1, there are errors in this theorem. Moreover, Theorem 2 and 3 have the same mistakes. For instance, because of (9), the following equalities are also not true:

0 1 2 | qτ 1 6 | p 0 d q τ = ( 1+ ( 3q1 ) p+1 )( 1q ) 6 p+1 q( 1 q p+1 ) , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipakmaaemaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaajugibiaadchaaaqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaaSaaaeaadaqadaqaaKqzGeGaaGymaiabgUcaROWaaeWaaeaajugibiaaiodacaWGXbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaadchacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaWaaeWaaeaajugibiaaigdacqGHsislcaWGXbaakiaawIcacaGLPaaaaeaajugibiaaiAdakmaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaacaWGXbGcdaqadaqaaKqzGeGaaGymaiabgkHiTiaadghakmaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaaaajugibiaaiYcaaaa@72B5@

1 2 1 | qτ 5 6 | p 0 d q τ = [ ( 53q ) p+1 + ( 6q5 ) p+1 ]( 1q ) 6 p+1 q( 1 q p+1 ) . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaakmaalaaaleaajugibiaaigdaaSqaaKqzGeGaaGOmaaaaaSqaaKqzGeGaaGymaaGaey4kIipakmaaemaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGynaaGcbaqcLbsacaaI2aaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaajugibiaadchaaaqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaaSaaaeaadaWadaqaamaabmaabaqcLbsacaaI1aGaeyOeI0IaaG4maiaadghaaOGaayjkaiaawMcaamaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaacqGHRaWkkmaabmaabaqcLbsacaaI2aGaamyCaiabgkHiTiaaiwdaaOGaayjkaiaawMcaamaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaaaOGaay5waiaaw2faamaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaaabaqcLbsacaaI2aGcdaahaaWcbeqaaKqzGeGaamiCaiabgUcaRiaaigdaaaGaamyCaOWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGcdaahaaWcbeqaaKqzGeGaamiCaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaaqcLbsacaaIUaaaaa@7AB1@

The integral boundaries that cause all these errors are chosen independently of q

In 2018 Tunç, et al. [21] obtained Simpson's type quantum integral inequalities. Unfortunately, there are many mistakes in the proofs. Many q -integrals are calculated incorrectly. Besides, the results of the lemma and theorems are also wrong. For example, in Lemma 4,

0 1 2 ( 1τ )| qτ 1 6 | 0 d q τ = 0 1 6q ( qτ 1 6 ) 0 d q τ + 1 6q 1 2 ( 1 6 qτ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipakmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaadaabdaqaaKqzGeGaamyCaiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOGaay5bSlaawIa7aKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaiabgUIiYdGcdaqadaqaaKqzGeGaamyCaiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaey4kaSIcdaWdXbqabSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipakmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaaaa@87F7@

( 0 1 6q τ( qτ 1 6 ) 0 d q τ + 1 6q 1 2 τ( 1 6 qτ ) 0 d q τ ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsislkmaabmaabaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaiabgUIiYdGaeqiXdqNcdaqadaqaaKqzGeGaamyCaiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaey4kaSIcdaWdXbqabSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaI2aGaamyCaaaaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipacqaHepaDkmaabmaabaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaaGccaGLOaGaayzkaaqcLbsacaaIUaaaaa@712B@

Here, for q( 0,1 ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgIGiopaabmaabaGaaGimaiaaiYcacaaIXaaacaGLOaGaayzkaaGaaGilaaaa@3E6E@ 1 6q 1 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOnaiaadghaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFWjIKdaWcaaqaaiaaigdaaeaacaaIYaaaaiaai6caaaa@4796@ For instance, q= 1 6 1 1 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2dadaWcaaqaaiaaigdaaeaacaaI2aaaaiabgkziUkaaigdatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=bNisoaalaaabaGaaGymaaqaaiaaikdaaaGaaGOlaaaa@4B05@ So, the proof of Lemma 4 is not correct. Lemma 5 also has the same errors. On the other hand, since Lemma 4 and Lemma 5 are used in the proof of Theorem 1, there are errors in this theorem. Moreover, Theorem 2 and 3 have the same mistakes. For instance, because of (9), the following equalities are also not true:

0 1 2 | qτ 1 6 | p 0 d q τ = ( 1+ ( 3q1 ) p+1 )( 1q ) 6 p+1 q( 1 q p+1 ) , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaaGaey4kIipakmaaemaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaajugibiaadchaaaqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaaSaaaeaadaqadaqaaKqzGeGaaGymaiabgUcaROWaaeWaaeaajugibiaaiodacaWGXbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaWaaWbaaSqabeaajugibiaadchacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaWaaeWaaeaajugibiaaigdacqGHsislcaWGXbaakiaawIcacaGLPaaaaeaajugibiaaiAdakmaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaacaWGXbGcdaqadaqaaKqzGeGaaGymaiabgkHiTiaadghakmaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaaaajugibiaaiYcaaaa@72B5@

1 2 1 | qτ 5 6 | p 0 d q τ = [ ( 53q ) p+1 + ( 6q5 ) p+1 ]( 1q ) 6 p+1 q( 1 q p+1 ) . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaakmaalaaaleaajugibiaaigdaaSqaaKqzGeGaaGOmaaaaaSqaaKqzGeGaaGymaaGaey4kIipakmaaemaabaqcLbsacaWGXbGaeqiXdqNaeyOeI0IcdaWcaaqaaKqzGeGaaGynaaGcbaqcLbsacaaI2aaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaajugibiaadchaaaqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaaSaaaeaadaWadaqaamaabmaabaqcLbsacaaI1aGaeyOeI0IaaG4maiaadghaaOGaayjkaiaawMcaamaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaacqGHRaWkkmaabmaabaqcLbsacaaI2aGaamyCaiabgkHiTiaaiwdaaOGaayjkaiaawMcaamaaCaaaleqabaqcLbsacaWGWbGaey4kaSIaaGymaaaaaOGaay5waiaaw2faamaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaaabaqcLbsacaaI2aGcdaahaaWcbeqaaKqzGeGaamiCaiabgUcaRiaaigdaaaGaamyCaOWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGcdaahaaWcbeqaaKqzGeGaamiCaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaaqcLbsacaaIUaaaaa@7AB1@

The integral boundaries that cause all these errors are chosen independently of q

Now, let us show the following Theorem 1 in [21] is not correct. For this, we give an example.

Theorem 2 Suppose that χ:[ρ,σ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWycaaI6aGaaG4waiabeg8aYjaaiYcacqaHdpWCcaaIDbGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@4DB8@  is a q - differentiable function on (ρ, σ) and 0 < q < 1. If | ρ D q χ| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8bGcdaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMaaGiFaaaa@4293@  is convex and integrable function on [ρ, σ], then we possess the inequality

1 6 | χ( ρ )+4χ( ρ+σ 2 )+χ( σ ) 1 ( σρ ) ρ σ χ( τ ) ρ d q τ |         (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaakmaaemaabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaGinaiabeE8aJPWaaeWaaeaadaWcaaqaaKqzGeGaeqyWdiNaey4kaSIaeq4WdmhakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaadaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaakiaawEa7caGLiWoacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabMcaaaa@7DC1@

( σρ ) 12 { 2 q 2 +2q+1 q 3 +2 q 2 +2q+1 | ρ D q χ( σ ) |+ 1 3 6 q 3 +4 q 2 +4q+1 q 3 +2 q 2 +2q+1 | ρ D q χ( ρ ) | }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHKjYOkmaalaaabaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaabaqcLbsacaaIXaGaaGOmaaaakmaacmaabaWaaSaaaeaajugibiaaikdacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaIYaGaamyCaiabgUcaRiaaigdaaOqaaKqzGeGaamyCaOWaaWbaaSqabeaajugibiaaiodaaaGaey4kaSIaaGOmaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaikdacaWGXbGaey4kaSIaaGymaaaakmaaemaabaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamiraOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaaacaGLhWUaayjcSdqcLbsacqGHRaWkkmaalaaabaqcLbsacaaIXaaakeaajugibiaaiodaaaGcdaWcaaqaaKqzGeGaaGOnaiaadghakmaaCaaaleqabaqcLbsacaaIZaaaaiabgUcaRiaaisdacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaI0aGaamyCaiabgUcaRiaaigdaaOqaaKqzGeGaamyCaOWaaWbaaSqabeaajugibiaaiodaaaGaey4kaSIaaGOmaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaikdacaWGXbGaey4kaSIaaGymaaaakmaaemaabaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamiraOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabeE8aJPWaaeWaaeaajugibiabeg8aYbGccaGLOaGaayzkaaaacaGLhWUaayjcSdaacaGL7bGaayzFaaqcLbsacaaIUaaaaa@9391@

Example 1 Let's choose χ( τ )=1τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeGaaGypaiaaigdacqGHsislcqaHepaDaaa@42FE@  on [0 ,1] and x(t) satisfies the conditions of Theorem 2. On the other hand, | ρ D q χ |=| ρ D q ( 1τ )|=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8bGcdaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMaaGiFaiaai2dacaaI8bGcdaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaOWaaeWaaeaajugibiaaigdacqGHsislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaaGiFaiaai2dacaaIXaaaaa@52BE@  is convex and integrable on [0 ,1] Then we have

1 6 | χ( ρ )+4χ( ρ+σ 2 )+χ( σ ) 1 ( σρ ) ρ σ χ( τ ) ρ d q τ |= 3+2q 6( 1+q ) .       (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaakmaaemaabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaGinaiabeE8aJPWaaeWaaeaadaWcaaqaaKqzGeGaeqyWdiNaey4kaSIaeq4WdmhakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaadaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaakiaawEa7caGLiWoajugibiaai2dakmaalaaabaqcLbsacaaIZaGaey4kaSIaaGOmaiaadghaaOqaaKqzGeGaaGOnaOWaaeWaaeaajugibiaaigdacqGHRaWkcaWGXbaakiaawIcacaGLPaaaaaqcLbsacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeykaaaa@892B@

Also,

( σρ ) 12 { 2 q 2 +2q+1 q 3 +2 q 2 +2q+1 | ρ D q χ( σ ) |+ 1 3 6 q 3 +4 q 2 +4q+1 q 3 +2 q 2 +2q+1 | ρ D q χ( ρ ) | }       (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaadaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaeaajugibiaaigdacaaIYaaaaOWaaiWaaeaadaWcaaqaaKqzGeGaaGOmaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaikdacaWGXbGaey4kaSIaaGymaaGcbaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaG4maaaacqGHRaWkcaaIYaGaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadghacqGHRaWkcaaIXaaaaOWaaqWaaeaadaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeq4WdmhakiaawIcacaGLPaaaaiaawEa7caGLiWoajugibiabgUcaROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaG4maaaakmaalaaabaqcLbsacaaI2aGaamyCaOWaaWbaaSqabeaajugibiaaiodaaaGaey4kaSIaaGinaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaisdacaWGXbGaey4kaSIaaGymaaGcbaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaG4maaaacqGHRaWkcaaIYaGaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadghacqGHRaWkcaaIXaaaaOWaaqWaaeaadaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqyWdihakiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUhacaGL9baacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@967E@

= 1 18 3 q 3 +5 q 2 +5q+2 q 3 +2 q 2 +2q+1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaaGioaaaakmaalaaabaqcLbsacaaIZaGaamyCaOWaaWbaaSqabeaajugibiaaiodaaaGaey4kaSIaaGynaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaiwdacaWGXbGaey4kaSIaaGOmaaGcbaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaG4maaaacqGHRaWkcaaIYaGaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadghacqGHRaWkcaaIXaaaaiaai6caaaa@5512@

As we have seen, from (2) and (3) and for q = (0, 1) we write

3+2q 6( 1+q ) 1 18 3 q 3 +5 q 2 +5q+2 q 3 +2 q 2 +2q+1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaiodacqGHRaWkcaaIYaGaamyCaaGcbaqcLbsacaaI2aGcdaqadaqaaKqzGeGaaGymaiabgUcaRiaadghaaOGaayjkaiaawMcaaaaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaKqzGeGae8hCIiPcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaaGioaaaakmaalaaabaqcLbsacaaIZaGaamyCaOWaaWbaaSqabeaajugibiaaiodaaaGaey4kaSIaaGynaiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaiwdacaWGXbGaey4kaSIaaGOmaaGcbaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaG4maaaacqGHRaWkcaaIYaGaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadghacqGHRaWkcaaIXaaaaiaai6caaaa@699F@

For instance, choosing q= 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXbGaaGypaOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaaaaa@3D09@ we have

4 9 7 54 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaisdaaOqaaKqzGeGaaGyoaaaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=bNisQWaaSaaaeaajugibiaaiEdaaOqaaKqzGeGaaGynaiaaisdaaaGaaGOlaaaa@4A41@

Therefore, Inequality (1) is not correct.

Similarly, other theorems can be shown to be false.

On the other hand, in [16], Alp, et al. showed that

χ( ρ+σ 2 ) 1 σρ ρ σ χ( ϰ ) ρ d q ϰ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiabeg8aYjabgUcaRiabeo8aZbGcbaqcLbsacaaIYaaaaaGccaGLOaGaayzkaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=bNisQWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihaaOWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbacgiqcLbsacqGFWpq+aOGaayjkaiaawMcaaKqzGeqbaeaaaeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiab+b=a5daaaaa@74E1@

and proved the following true q -Hermite-Hadamard inequalities convex functions on quantum integral:

Theorem 3 If χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWycaaI6aGcdaWadaqaaKqzGeGaeqyWdiNaaGilaiabeo8aZbGccaGLBbGaayzxaaqcLbsacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4F10@  be a convex differentiable function on [ρ, σ] and and 0 < q < 1. Then, q -Hermite-Hadamard inequalities

χ( qρ+σ 1+q ) 1 σρ ρ σ χ( ϰ ) ρ d q ϰ qχ( ρ )+χ( σ ) 1+q . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiaadghacqaHbpGCcqGHRaWkcqaHdpWCaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaakiaawIcacaGLPaaajugibiabgsMiJQWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihaaOWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+aOGaayjkaiaawMcaaKqzGeqbaeaaaeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiab=b=a5daacqGHKjYOkmaalaaabaqcLbsacaWGXbGaeq4XdmMcdaqadaqaaKqzGeGaeqyWdihakiaawIcacaGLPaaajugibiabgUcaRiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaaabaqcLbsacaaIXaGaey4kaSIaamyCaaaacaaIUaaaaa@81FF@

As can be seen, q -Hermite-Hadamard inequality includes the value of χ( qρ+σ 1+q ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiaadghacqaHbpGCcqGHRaWkcqaHdpWCaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaakiaawIcacaGLPaaaaaa@450D@ . For this, Simpson's type quantum integral inequalities must also contain the value χ( qρ+σ 1+q ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiaadghacqaHbpGCcqGHRaWkcqaHdpWCaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaakiaawIcacaGLPaaajugibiaai6caaaa@4654@

In this paper, motivated by the above results, by choosing the appropriate integral bounds we establish correct Simpson-type quantum integral inequalities obtained by using quantum integrals for functions whose absolute value of the q -derivatives are convex. Later, similar results for mappings whose powers of the absolute value of q -derivatives are convex are obtained via Hölder's inequality. Also, relations between special cases of these results and inequalities presented in the earlier works are examined.

Preliminaries and Definitions of q-Calculus

Throughout this paper, let ρ < σ and 0 < q < 1 be a constant. The following definitions and theorems for q - derivative and q - integral of a function x on [ρ, σ] are given in [15,21].

Definition 1 [15,21]. For a continuous function χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWycaaI6aGcdaWadaqaaKqzGeGaeqyWdiNaaGilaiabeo8aZbGccaGLBbGaayzxaaqcLbsacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4F10@  then q - derivative of x at ϰ[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=b=a5labgIGioRWaamWaaeaajugibiabeg8aYjaaiYcacqaHdpWCaOGaay5waiaaw2faaaaa@4CE2@  is characterized by the expression

ρ D q χ( ϰ ) = χ( ϰ )χ( qϰ+( 1q )ρ ) ( 1q )( ϰρ ) ,ϰρ.       (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+aOGaayjkaiaawMcaaaaajugibiaai2dakmaalaaabaqcLbsacqaHhpWykmaabmaabaqcLbsacqWFWpq+aOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaeq4XdmMcdaqadaqaaKqzGeGaamyCaiab=b=a5labgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbaakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaabaWaaeWaaeaajugibiaaigdacqGHsislcaWGXbaakiaawIcacaGLPaaadaqadaqaaKqzGeGae8h8dKVaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaqcLbsacaaISaGae8h8dKVaeyiyIKRaeqyWdiNaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@8247@

Since χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhpWycaaI6aGcdaWadaqaaKqzGeGaeqyWdiNaaGilaiabeo8aZbGccaGLBbGaayzxaaqcLbsacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4F10@ is a continuous function, thus we have ρ D q χ( ρ ) = lim ϰρ ρ D q χ( ϰ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqyWdihakiaawIcacaGLPaaaaaqcLbsacaaI9aGcdaWfqaqaaKqzGeGaciiBaiaacMgacaGGTbaaleaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzGeGae8h8dKVaeyOKH4QaeqyWdihaleqaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamiraOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabeE8aJPWaaeWaaeaajugibiab=b=a5dGccaGLOaGaayzkaaaaaaaa@66E5@ . The function x is said to be q - differentiable on [ρ, σ] if ρ D q χ( τ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqhacaGLOaGaayzkaaaaaaaa@4085@  exists for all ϰ[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+cqGHiiIZdaWadaqaaiabeg8aYjaaiYcacqaHdpWCaiaawUfacaGLDbaaaaa@4B36@ . If ρ = 0 in (4), then 0 D q χ( ϰ )= D q χ( ϰ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpacaGLOaGaayzkaaGaaGypaiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiab=b=a5dGaayjkaiaawMcaaaaaaaa@5224@ , where D q χ( ϰ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaaqaaiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpacaGLOaGaayzkaaaaaaaa@48C7@  is familiar q -derivative of x at ϰ[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+cqGHiiIZdaWadaqaaiabeg8aYjaaiYcacqaHdpWCaiaawUfacaGLDbaaaaa@4B36@ defined by the expression ([12,23])

D q χ( ϰ ) = χ( ϰ )χ( qϰ ) ( 1q )ϰ ,ϰ0.      (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqabeqabaaakeaajugibiaadseakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHhpWykmaabmaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=b=a5dGccaGLOaGaayzkaaaaaKqzGeGaaGypaOWaaSaaaeaajugibiabeE8aJPWaaeWaaeaajugibiab=b=a5dGccaGLOaGaayzkaaqcLbsacqGHsislcqaHhpWykmaabmaabaqcLbsacaWGXbGae8h8dKpakiaawIcacaGLPaaaaeaadaqadaqaaKqzGeGaaGymaiabgkHiTiaadghaaOGaayjkaiaawMcaaKqzGeGae8h8dKpaaiaaiYcacqWFWpq+cqGHGjsUcaaIWaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG1aGaaeykaaaa@714F@

Definition 2 [21, 22]. Let χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoamaadmaabaGaeqyWdiNaaGilaiabeo8aZbGaay5waiaaw2faaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CD5@  be a continuous function. Then the q -definite integral on [ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacqaHbpGCcaaISaGaeq4WdmhacaGLBbGaayzxaaaaaa@3DB5@  is delineated as

ρ ϰ χ( τ ) ρ d q τ =( 1q )( ϰρ ) n=0 q n χ( q n ϰ+( 1 q n )ρ )      (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiabeg8aYbWcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=b=a5dGaey4kIipacqaHhpWykmaabmaabaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baacaaI9aGcdaqadaqaaKqzGeGaaGymaiabgkHiTiaadghaaOGaayjkaiaawMcaamaabmaabaqcLbsacqWFWpq+cqGHsislcqaHbpGCaOGaayjkaiaawMcaamaaqahabeWcbaqcLbsacaWGUbGaaGypaiaaicdaaSqaaKqzGeGaeyOhIukacqGHris5aiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiabeE8aJPWaaeWaaeaajugibiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiab=b=a5labgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaaaaaOGaayjkaiaawMcaaKqzGeGaeqyWdihakiaawIcacaGLPaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabMcaaaa@8708@

for ϰ[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=b=a5labgIGioRWaamWaaeaajugibiabeg8aYjaaiYcacqaHdpWCaOGaay5waiaaw2faaaaa@4CE2@ .

If ρ = 0 in (6), then 0 ϰ χ( τ ) 0 d q τ = 0 ϰ χ( τ ) d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+a0Gaey4kIipakiabeE8aJnaabmaabaGaeqiXdqhacaGLOaGaayzkaaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaGaaGypamaapehabeWcbaGaaGimaaqaaiab=b=a5dqdcqGHRiI8aOGaeq4Xdm2aaeWaaeaacqaHepaDaiaawIcacaGLPaaafaqabeqabaaabaGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@5FDF@ , where 0 ϰ χ( τ ) d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFWpq+a0Gaey4kIipakiabeE8aJnaabmaabaGaeqiXdqhacaGLOaGaayzkaaqbaeqabeqaaaqaaiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaaaa@4F9F@ is familiar q -definite integral on [ 0,ϰ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaaIWaGaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpacaGLBbGaayzxaaaaaa@46E9@  defined by the expression (see [14])

0 ϰ χ( τ ) 0 d q τ = 0 ϰ χ( τ ) d q τ =( 1q )ϰ n=0 q n χ( q n ϰ ).       (7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+aiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaiaai2dakmaapehabeWcbaqcLbsacaaIWaaaleaajugibiab=b=a5dGaey4kIipacqaHhpWykmaabmaabaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaiaai2dakmaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaqcLbsacqWFWpq+kmaaqahabeWcbaqcLbsacaWGUbGaaGypaiaaicdaaSqaaKqzGeGaeyOhIukacqGHris5aiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiabeE8aJPWaaeWaaeaajugibiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiab=b=a5dGccaGLOaGaayzkaaqcLbsacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG3aGaaeykaaaa@8C5D@

If c( ρ,ϰ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgIGiopaabmaabaGaeqyWdiNaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpacaGLOaGaayzkaaaaaa@49F2@ , then the q -definite integral on [ c,ϰ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWGJbGaaGilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8h8dKpacaGLBbGaayzxaaaaaa@4717@ is expressed as

c ϰ χ( τ ) ρ d q τ = ρ ϰ χ( τ ) ρ d q τ ρ c χ( τ ) ρ d q τ .      (8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaadogaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbsacqWFWpq+aiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGypaOWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqWFWpq+aiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaeyOeI0IcdaWdXbqabSqaaKqzGeGaeqyWdihaleaajugibiaadogaaiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG4aGaaeykaaaa@89E4@

[ n ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWGUbaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaa@3B91@ notation

[ n ] q = q n 1 q1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacaWGUbaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGaaGypamaalaaabaGaamyCamaaCaaaleqabaGaamOBaaaakiabgkHiTiaaigdaaeaacaWGXbGaeyOeI0IaaGymaaaaaaa@42D8@

Lemma 1 [21] For α\{ 1 } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaGGCbWaaiWaaeaacqGHsislcaaIXaaacaGL7bGaayzFaaaaaa@4A1E@ , the following formula holds:

ρ ϰ ( τρ ) α ρ d q τ = ( ϰρ ) α+1 [ α+1 ] q .      (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacqaHbpGCaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b=a5dqdcqGHRiI8aOWaaeWaaeaacqaHepaDcqGHsislcqaHbpGCaiaawIcacaGLPaaadaahaaWcbeqaaiabeg7aHbaakuaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaGaaGypamaalaaabaWaaeWaaeaacqWFWpq+cqGHsislcqaHbpGCaiaawIcacaGLPaaadaahaaWcbeqaaiabeg7aHjabgUcaRiaaigdaaaaakeaadaWadaqaaiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG5aGaaeykaaaa@6D4F@

Main results

For convenience, we begin with some notations which will be used in what follows.

A 1 (q)=2 q [ 3 ] q [ 6 ] q q 2 [ 2 ] q [ 3 ] q [ 6 ] q 3 + 1 [ 2 ] q 3 ( q+ q 2 [ 3 ] q q 2 +2q [ 6 ] q ),       (10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGikaiaadghacaaIPaGaaGypaiaaikdakmaalaaabaqcLbsacaWGXbGcdaWadaqaaKqzGeGaaG4maaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeyOeI0IaamyCaOWaaWbaaSqabeaajugibiaaikdaaaaakeaadaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaadmaabaqcLbsacaaIZaaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaOWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaDaaaleaajugibiaadghaaSqaaKqzGeGaaG4maaaaaaGaey4kaSIcdaWcaaqaaKqzGeGaaGymaaGcbaWaamWaaeaajugibiaaikdaaOGaay5waiaaw2faamaaDaaaleaajugibiaadghaaSqaaKqzGeGaaG4maaaaaaGcdaqadaqaamaalaaabaqcLbsacaWGXbGaey4kaSIaamyCaOWaaWbaaSqabeaajugibiaaikdaaaaakeaadaWadaqaaKqzGeGaaG4maaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaaaaqcLbsacqGHsislkmaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWkcaaIYaGaamyCaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeimaiaabMcaaaa@8870@

B 1 (q)= 2 q 2 [ 2 ] q 2 + [ 6 ] q 2 ( [ 6 ] q [ 3 ] q ) [ 2 ] q 3 [ 3 ] q [ 6 ] q 3 ,       (11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcbGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGikaiaadghacaaIPaGaaGypaOWaaSaaaeaajugibiaaikdacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaakmaadmaabaqcLbsacaaIYaaakiaawUfacaGLDbaadaqhaaWcbaqcLbsacaWGXbaaleaajugibiaaikdaaaGaey4kaSIcdaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIYaaaaOWaaeWaaeaadaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabgkHiTOWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaakiaawIcacaGLPaaaaeaadaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIZaaaaOWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaGcdaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIZaaaaaaacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeymaiaabMcaaaa@76DF@

A 2 (q)=2 q [ 5 ] q 2 [ 6 ] q [ 3 ] q q 2 [ 5 ] q 3 [ 2 ] q [ 3 ] q [ 6 ] q 3 + q 2 [ 2 ] q [ 3 ] q q [ 5 ] q [ 2 ] q [ 6 ] q        (12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGikaiaadghacaaIPaGaaGypaiaaikdakmaalaaabaqcLbsacaWGXbGcdaWadaqaaKqzGeGaaGynaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIYaaaaOWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaGcdaWadaqaaKqzGeGaaG4maaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabgkHiTiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaOWaamWaaeaajugibiaaiwdaaOGaay5waiaaw2faamaaDaaaleaajugibiaadghaaSqaaKqzGeGaaG4maaaaaOqaamaadmaabaqcLbsacaaIYaaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaOWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaGcdaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIZaaaaaaacqGHRaWkkmaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaaaOqaamaadmaabaqcLbsacaaIYaaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaOWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaKqzGeGaeyOeI0IcdaWcaaqaaKqzGeGaamyCaOWaamWaaeaajugibiaaiwdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaakeaadaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaaakiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabkdacaqGPaaaaa@93DC@

1 [ 2 ] q 3 [ ( q 2 +2q ) [ 5 ] q [ 6 ] q q+ q 2 [ 3 ] q ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaadaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIZaaaaaaakmaadmaabaWaaSaaaeaadaqadaqaaKqzGeGaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaaGOmaiaadghaaOGaayjkaiaawMcaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaKqzGeGaeyOeI0IcdaWcaaqaaKqzGeGaamyCaiabgUcaRiaadghakmaaCaaaleqabaqcLbsacaaIYaaaaaGcbaWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaaGccaGLBbGaayzxaaaaaa@601C@

and

B 2 (q)= 2 q 2 [ 5 ] q 3 [ 2 ] q [ 3 ] q [ 6 ] q 3 + [ 6 ] q (1+ [ 2 ] q 3 ) [ 3 ] q [ 5 ] q (1+ [ 2 ] q 2 ) [ 2 ] q 3 [ 3 ] q [ 6 ] q .      (13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGikaiaadghacaaIPaGaaGypaOWaaSaaaeaajugibiaaikdacaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaakmaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaqhaaWcbaqcLbsacaWGXbaaleaajugibiaaiodaaaaakeaadaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaadmaabaqcLbsacaaIZaaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaOWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaDaaaleaajugibiaadghaaSqaaKqzGeGaaG4maaaaaaGaey4kaSIcdaWcaaqaamaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaaGikaiaaigdacqGHRaWkkmaadmaabaqcLbsacaaIYaaakiaawUfacaGLDbaadaqhaaWcbaqcLbsacaWGXbaaleaajugibiaaiodaaaGaaGykaiabgkHiTOWaamWaaeaajugibiaaiodaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaGcdaWadaqaaKqzGeGaaGynaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiaaiIcacaaIXaGaey4kaSIcdaWadaqaaKqzGeGaaGOmaaGccaGLBbGaayzxaaWaa0baaSqaaKqzGeGaamyCaaWcbaqcLbsacaaIYaaaaiaaiMcaaOqaamaadmaabaqcLbsacaaIYaaakiaawUfacaGLDbaadaqhaaWcbaqcLbsacaWGXbaaleaajugibiaaiodaaaGcdaWadaqaaKqzGeGaaG4maaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaaajugibiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabodacaqGPaaaaa@9680@

In order to easily prove our main results we first give a new identity including quantum integrals in the following.

Lemma 2 Let χ:[ ρ,σ ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoamaadmaabaGaeqyWdiNaaGilaiabeo8aZbGaay5waiaaw2faaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CD5@  be a q - differentiable function on (ρ, σ) and 0<q <1. If ρ D q χ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJbaaaaa@3D37@  is continuous and integrable on [ρ, σ], then we possess the identity

qχ( ρ )+ q 2 [ 4 ] q χ( qρ+σ 1+q )+χ( σ ) [ 6 ] q 1 ( σρ ) ρ σ χ( τ ) ρ d q τ       (14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaadghacqaHhpWykmaabmaabaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamyCaOWaaWbaaSqabeaajugibiaaikdaaaGcdaWadaqaaKqzGeGaaGinaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabeE8aJPWaaeWaaeaadaWcaaqaaKqzGeGaamyCaiabeg8aYjabgUcaRiabeo8aZbGcbaqcLbsacaaIXaGaey4kaSIaamyCaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaeq4XdmMcdaqadaqaaKqzGeGaeq4WdmhakiaawIcacaGLPaaaaeaadaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaaaaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaadaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG0aGaaeykaaaa@86D8@

=q( σρ ) 0 1 ψ(τ) ρ D q χ( τσ+( 1τ )ρ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGaamyCaOWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaWaa8qCaeqaleaajugibiaaicdaaSqaaKqzGeGaaGymaaGaey4kIipacqaHipqEcaaIOaGaeqiXdqNaaGykauaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadseakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHepaDcqaHdpWCcqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaaaa@6912@

where

ψ(τ)={ τ 1 [ 6 ] q τ[ 0, 1 1+q ) τ [ 5 ] q [ 6 ] q τ[ 1 1+q ,1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHipqEcaaIOaGaeqiXdqNaaGykaiaai2dakmaaceaabaqcLbsafaqabeGacaaakeaajugibiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaamaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaaaaOqaaKqzGeGaeqiXdqNaeyicI4ScdaqcsaqaaKqzGeGaaGimaiaaiYcakmaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcaWGXbaaaaGccaGLBbGaayzkaaaabaqcLbsacqaHepaDcqGHsislkmaalaaabaWaamWaaeaajugibiaaiwdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaakeaadaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaaaaaakeaajugibiabes8a0jabgIGioRWaamWaaeaadaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaaacaaISaGaaGymaaGccaGLBbGaayzxaaqcLbsacaaIUaaaaaGccaGL7baaaaa@70CF@

Proof. From the basic properties of quantum integral and the definition of ψ(τ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaGikaiabes8a0jaaiMcaaaa@3C82@ , it follows that

0 1 ψ(τ) ρ D q χ( τσ+( 1τ )ρ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaKqzGeGaaGymaaGaey4kIipacqaHipqEcaaIOaGaeqiXdqNaaGykauaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadseakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHepaDcqaHdpWCcqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaaaa@602A@

= [ 5 ] q 1 [ 6 ] q 0 1 1+q ρ D q χ( τσ+( 1τ )ρ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeyOeI0IaaGymaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaOWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIXaGaey4kaSIaamyCaaaaaiabgUIiYdqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamiraOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabeE8aJPWaaeWaaeaajugibiabes8a0jabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaeqyWdihakiaawIcacaGLPaaaaaqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baaaaa@6C4C@

+ 0 1 ( τ [ 5 ] q [ 6 ] q ) ρ D q χ( τσ+( 1τ )ρ ) 0 d q τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHRaWkkmaapehabeWcbaqcLbsacaaIWaaaleaajugibiaaigdaaiabgUIiYdGcdaqadaqaaKqzGeGaeqiXdqNaeyOeI0IcdaWcaaqaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaaGccaGLOaGaayzkaaqcLbsafaqabeqabaaakeaadaWgaaWcbaqcLbsacqaHbpGCaSqabaqcLbsacaWGebGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqNaeq4WdmNaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaiaai6caaaa@6D03@

Also, using the definition of q -derivative, we find that

0 1 ψ(τ) ρ D q χ( τσ+( 1τ )ρ ) 0 d q τ        (15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaKqzGeGaaGymaaGaey4kIipacqaHipqEcaaIOaGaeqiXdqNaaGykauaabeqabeaaaOqaamaaBaaaleaajugibiabeg8aYbWcbeaajugibiaadseakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHepaDcqaHdpWCcqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeynaiaabMcaaaa@6762@

= [ 5 ] q 1 [ 6 ] q 0 1 1+q χ( τσ+( 1τ )ρ )χ( qτσ+( 1qτ )ρ ) τ( 1q )( σρ ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeyOeI0IaaGymaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaOWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIXaGaey4kaSIaamyCaaaaaiabgUIiYdGcdaWcaaqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqNaeq4WdmNaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaeq4XdmMcdaqadaqaaKqzGeGaamyCaiabes8a0jabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaabaqcLbsacqaHepaDkmaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaaaaa@87FA@

+ 0 1 ( τ [ 5 ] q [ 6 ] q ) χ( τσ+( 1τ )ρ )χ( qτσ+( 1qτ )ρ ) τ( 1q )( σρ ) 0 d q τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHRaWkkmaapehabeWcbaqcLbsacaaIWaaaleaajugibiaaigdaaiabgUIiYdGcdaqadaqaaKqzGeGaeqiXdqNaeyOeI0IcdaWcaaqaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaaaaGccaGLOaGaayzkaaWaaSaaaeaajugibiabeE8aJPWaaeWaaeaajugibiabes8a0jabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcqaHepaDaOGaayjkaiaawMcaaKqzGeGaeqyWdihakiaawIcacaGLPaaajugibiabgkHiTiabeE8aJPWaaeWaaeaajugibiaadghacqaHepaDcqaHdpWCcqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaaqaaKqzGeGaeqiXdqNcdaqadaqaaKqzGeGaaGymaiabgkHiTiaadghaaOGaayjkaiaawMcaamaabmaabaqcLbsacqaHdpWCcqGHsislcqaHbpGCaOGaayjkaiaawMcaaaaajugibuaabeqabeaaaOqaamaaBaaaleaajugibiaaicdaaSqabaqcLbsacaWGKbGcdaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeqiXdqhaaiaai6caaaa@8818@

Now, if we calculate the first quantum integral on the right side of the above equality by considering the definition 2, then we obtain

0 1 1+q χ( τσ+( 1τ )ρ )χ( qτσ+( 1qτ )ρ ) τ( 1q )( σρ ) 0 d q τ        (16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaOWaaSaaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIXaGaey4kaSIaamyCaaaaaiabgUIiYdGcdaWcaaqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqNaeq4WdmNaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaeq4XdmMcdaqadaqaaKqzGeGaamyCaiabes8a0jabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaabaqcLbsacqaHepaDkmaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOnaiaabMcaaaa@816B@

= 1 ( σρ ) 1 1+q { n=0 q n χ( q n 1+q σ+( 1 q n 1+q )ρ ) q n 1+q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaamaalaaabaqcLbsacaaIXaaakeaajugibiaaigdacqGHRaWkcaWGXbaaaOWaaiqaaeaadaaeWbqabSqaaKqzGeGaamOBaiaai2dacaaIWaaaleaajugibiabg6HiLcGaeyyeIuoacaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaaaakmaalaaabaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaaacqaHdpWCcqGHRaWkkmaabmaabaqcLbsacaaIXaGaeyOeI0IcdaWcaaqaaKqzGeGaamyCaOWaaWbaaSqabeaajugibiaad6gaaaaakeaajugibiaaigdacqGHRaWkcaWGXbaaaaGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaaqaamaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaaaaaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaaaaGccaGL7baaaaa@713E@

n=0 q n χ( q n+1 1+q σ+( 1 q n+1 1+q )ρ ) q n 1+q } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaajugibiabgkHiTOWaaabCaeqaleaajugibiaad6gacaaI9aGaaGimaaWcbaqcLbsacqGHEisPaiabggHiLdGaamyCaOWaaWbaaSqabeaajugibiaad6gaaaGcdaWcaaqaaKqzGeGaeq4XdmMcdaqadaqaamaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaiabgUcaRiaaigdaaaaakeaajugibiaaigdacqGHRaWkcaWGXbaaaiabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislkmaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaiabgUcaRiaaigdaaaaakeaajugibiaaigdacqGHRaWkcaWGXbaaaaGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaaqaamaalaaabaqcLbsacaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaaaaaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaaaaGccaGL9baaaaa@681B@

= 1 ( σρ ) { χ( qρ+σ 1+q )χ( ρ ) }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaamaacmaabaqcLbsacqaHhpWykmaabmaabaWaaSaaaeaajugibiaadghacqaHbpGCcqGHRaWkcqaHdpWCaOqaaKqzGeGaaGymaiabgUcaRiaadghaaaaakiaawIcacaGLPaaajugibiabgkHiTiabeE8aJPWaaeWaaeaajugibiabeg8aYbGccaGLOaGaayzkaaaacaGL7bGaayzFaaqcLbsacaaIUaaaaa@58FA@

Similarly, we have

0 1 ( τ [ 5 ] q [ 6 ] q ) χ( τσ+( 1τ )ρ )χ( qτσ+( 1qτ )ρ ) τ( 1q )( σρ ) 0 d q τ        (17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaajugibiaaicdaaSqaaKqzGeGaaGymaaGaey4kIipakmaabmaabaqcLbsacqaHepaDcqGHsislkmaalaaabaWaamWaaeaajugibiaaiwdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaakeaadaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaaaaaakiaawIcacaGLPaaadaWcaaqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqNaeq4WdmNaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaeq4XdmMcdaqadaqaaKqzGeGaamyCaiabes8a0jabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGaeqiXdqhakiaawIcacaGLPaaajugibiabeg8aYbGccaGLOaGaayzkaaaabaqcLbsacqaHepaDkmaabmaabaqcLbsacaaIXaGaeyOeI0IaamyCaaGccaGLOaGaayzkaaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiaadsgakmaaBaaaleaajugibiaadghaaSqabaqcLbsacqaHepaDaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaae4naiaabMcaaaa@8D1F@

= 1 ( σρ ) { ( q1 q ) n=0 q n χ( q n σ+( 1 q n )ρ )+ 1 q χ( σ ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaaaamaacmaabaWaaeWaaeaadaWcaaqaaKqzGeGaamyCaiabgkHiTiaaigdaaOqaaKqzGeGaamyCaaaaaOGaayjkaiaawMcaamaaqahabeWcbaqcLbsacaWGUbGaaGypaiaaicdaaSqaaKqzGeGaeyOhIukacqGHris5aiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiabeE8aJPWaaeWaaeaajugibiaadghakmaaCaaaleqabaqcLbsacaWGUbaaaiabeo8aZjabgUcaROWaaeWaaeaajugibiaaigdacqGHsislcaWGXbGcdaahaaWcbeqaaKqzGeGaamOBaaaaaOGaayjkaiaawMcaaKqzGeGaeqyWdihakiaawIcacaGLPaaajugibiabgUcaROWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaamyCaaaacqaHhpWykmaabmaabaqcLbsacqaHdpWCaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@6FF0@

[ 5 ] q [ 6 ] q ( σρ ) { χ( σ )χ( ρ ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsislkmaalaaabaWaamWaaeaajugibiaaiwdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaaakeaadaWadaqaaKqzGeGaaGOnaaGccaGLBbGaayzxaaWaaSbaaSqaaKqzGeGaamyCaaWcbeaakmaabmaabaqcLbsacqaHdpWCcqGHsislcqaHbpGCaOGaayjkaiaawMcaaaaadaGadaqaaKqzGeGaeq4XdmMcdaqadaqaaKqzGeGaeq4WdmhakiaawIcacaGLPaaajugibiabgkHiTiabeE8aJPWaaeWaaeaajugibiabeg8aYbGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@59D2@

= 1 q( σρ ) χ( σ ) [ 5 ] q [ 6 ] q ( σρ ) { χ( σ )χ( ρ ) } 1 q ( σρ ) 2 ρ σ χ( τ ) ρ d q τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGXbGcdaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHdpWCaOGaayjkaiaawMcaaKqzGeGaeyOeI0IcdaWcaaqaamaadmaabaqcLbsacaaI1aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaGcbaWaamWaaeaajugibiaaiAdaaOGaay5waiaaw2faamaaBaaaleaajugibiaadghaaSqabaGcdaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaWaaiWaaeaajugibiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaqcLbsacqGHsislcqaHhpWykmaabmaabaqcLbsacqaHbpGCaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaKqzGeGaeyOeI0IcdaWcaaqaaKqzGeGaaGymaaGcbaqcLbsacaWGXbGcdaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaadaahaaWcbeqaaKqzGeGaaGOmaaaaaaGcdaWdXbqabSqaaKqzGeGaeqyWdihaleaajugibiabeo8aZbGaey4kIipacqaHhpWykmaabmaabaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baacaaIUaaaaa@8D9E@

Multiplying the resulting equality by q(σρ) after substituting the identities (16) and (17) in (15), the desired result can be readily attained.

Corollary 4 Under the assumptions of Lemma 2 with q1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdaaaa@3B28@ , one has

1 6 [ χ( ρ )+4χ( ρ+σ 2 )+χ( σ ) ] 1 ( σρ ) ρ σ χ( τ )dτ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaakmaadmaabaqcLbsacqaHhpWykmaabmaabaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaGinaiabeE8aJPWaaeWaaeaadaWcaaqaaKqzGeGaeqyWdiNaey4kaSIaeq4WdmhakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiabgUcaRiabeE8aJPWaaeWaaeaajugibiabeo8aZbGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsacqGHsislkmaalaaabaqcLbsacaaIXaaakeaadaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaWaa8qCaeqaleaajugibiabeg8aYbWcbaqcLbsacqaHdpWCaiabgUIiYdGaeq4XdmMcdaqadaqaaKqzGeGaeqiXdqhakiaawIcacaGLPaaajugibiaadsgacqaHepaDaaa@6F42@

=q( σρ ) 0 1 ψ(τ) χ ' ( τσ+( 1τ )ρ )dτ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9aGaamyCaOWaaeWaaeaajugibiabeo8aZjabgkHiTiabeg8aYbGccaGLOaGaayzkaaWaa8qCaeqaleaajugibiaaicdaaSqaaKqzGeGaaGymaaGaey4kIipacqaHipqEcaaIOaGaeqiXdqNaaGykaiabeE8aJPWaaWbaaSqabeaajugibiaadEcaaaGcdaqadaqaaKqzGeGaeqiXdqNaeq4WdmNaey4kaSIcdaqadaqaaKqzGeGaaGymaiabgkHiTiabes8a0bGccaGLOaGaayzkaaqcLbsacqaHbpGCaOGaayjkaiaawMcaaKqzGeGaamizaiabes8a0baa@5FC3@

which was presented by Alomari, et al. in [3]. Here, ψ(τ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaGikaiabes8a0jaaiMcaaaa@3C82@ is defined by

ψ(τ)={ τ 1 6 τ[ 0, 1 2 ) τ 5 6 τ[ 1 2 ,1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHipqEcaaIOaGaeqiXdqNaaGykaiaai2dakmaaceaabaqcLbsafaqabeGacaaakeaajugibiabes8a0jabgkHiTOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOnaaaaaOqaaKqzGeGaeqiXdqNaeyicI4ScdaqcsaqaaKqzGeGaaGimaiaaiYcakmaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaaakiaawUfacaGLPaaaaeaajugibiabes8a0jabgkHiTOWaaSaaaeaajugibiaaiwdaaOqaaKqzGeGaaGOnaaaaaOqaaKqzGeGaeqiXdqNaeyicI4ScdaWadaqaamaalaaabaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGilaiaaigdaaOGaay5waiaaw2faaKqzGeGaaGOlaaaaaOGaay5Eaaaaaa@61F9@

Now, we examine how the results come out when we use a function whose quantum derivatives in modulus are convex.

Theorem 5 Suppose that χ:[ρ,σ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoaiaaiUfacqaHbpGCcaaISaGaeq4WdmNaaGyxaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CAF@ is a q - differentiable function on (ρ, σ) and0 <q < 1. If | ρ D q χ| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJjaaiYhaaaa@3F38@  is convex and integrable function on [ρ, σ], then we possess the inequality

| qχ( ρ )+ q 2 [ 4 ] q χ( qρ+σ 1+q )+χ( σ ) [ 6 ] q 1 ( σρ ) ρ σ χ( τ ) ρ d q τ |        (18) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaKqzGeGaamyCaiabeE8aJPWaaeWaaeaajugibiabeg8aYbGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGXbGcdaahaaWcbeqaaKqzGeGaaGOmaaaakmaadmaabaqcLbsacaaI0aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaKqzGeGaeq4XdmMcdaqadaqaamaalaaabaqcLbsacaWGXbGaeqyWdiNaey4kaSIaeq4WdmhakeaajugibiaaigdacqGHRaWkcaWGXbaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaHhpWykmaabmaabaqcLbsacqaHdpWCaOGaayjkaiaawMcaaaqaamaadmaabaqcLbsacaaI2aaakiaawUfacaGLDbaadaWgaaWcbaqcLbsacaWGXbaaleqaaaaajugibiabgkHiTOWaaSaaaeaajugibiaaigdaaOqaamaabmaabaqcLbsacqaHdpWCcqGHsislcqaHbpGCaOGaayjkaiaawMcaaaaadaWdXbqabSqaaKqzGeGaeqyWdihaleaajugibiabeo8aZbGaey4kIipacqaHhpWykmaabmaabaqcLbsacqaHepaDaOGaayjkaiaawMcaaKqzGeqbaeqabeqaaaGcbaWaaSbaaSqaaKqzGeGaeqyWdihaleqaaKqzGeGaamizaOWaaSbaaSqaaKqzGeGaamyCaaWcbeaajugibiabes8a0baaaOGaay5bSlaawIa7aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG4aGaaeykaaaa@8B4E@

q( σρ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHKjYOcaWGXbGcdaqadaqaaKqzGeGaeq4WdmNaeyOeI0IaeqyWdihakiaawIcacaGLPaaaaaa@41DA@

×{ | ρ D q χ( ρ ) |[ A 1 (q)+ A 2 (q) ]+| ρ D q χ( σ ) |[ B 1 (q)+ B 2 (q) ] } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaiWaaeaadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaamWaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaaGaay5waiaaw2faaiabgUcaRmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaWadaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacqGHRaWkcaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaaacaGLBbGaayzxaaaacaGL7bGaayzFaaaaaa@6AC5@

where A 1 (q),  A 2 (q),  B 1 (q) and  B 2 (q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaaiYcacaqGGaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiYcacaqGGaGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaaaa@4E8A@ are defined as in (10)-(13), respectively.

Proof. If we take the absolute value of both sides of (14), then we have

| qχ( ρ )+ q 2 [ 4 ] q χ( qρ+σ 1+q )+χ( σ ) [ 6 ] q 1 ( σρ ) ρ σ χ( τ ) ρ d q τ |       (19) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaiaadghacqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaaisdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaamaalaaabaGaamyCaiabeg8aYjabgUcaRiabeo8aZbqaaiaaigdacqGHRaWkcaWGXbaaaaGaayjkaiaawMcaaiabgUcaRiabeE8aJnaabmaabaGaeq4WdmhacaGLOaGaayzkaaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaaaamaapehabeWcbaGaeqyWdihabaGaeq4WdmhaniabgUIiYdGccqaHhpWydaqadaqaaiabes8a0bGaayjkaiaawMcaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaacaGLhWUaayjcSdGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeyoaiaabMcaaaa@7C1E@

q( σρ ) 0 1 1+q | τ 1 [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@6B84@

+q( σρ ) 1 1+q 1 | τ [ 5 ] q [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaamyCamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaWaa8qCaeqaleaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaemaabaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqNaeq4WdmNaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaGaeqyWdihacaGLOaGaayzkaaaaaaGaay5bSlaawIa7auaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiaai6caaaa@6E8C@

For the first expression on the right side of the inequality (19), seeing that | ρ D q χ( τ ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0bGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@439C@  is convex on [ρ, σ], it follows that

0 1 1+q | τ 1 [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@62E0@

| ρ D q χ( ρ ) | 0 1 1+q ( 1τ )| τ 1 [ 6 ] q | 0 d q τ +| ρ D q χ( σ ) | 0 1 1+q τ| τ 1 [ 6 ] q | 0 d q τ . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5bSlaawIa7amaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOWaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaWaaqWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLhWUaayjcSdqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaGaey4kaSYaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOGaeqiXdq3aaqWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLhWUaayjcSdqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaGaaGOlaaaa@856D@

Now, calculating the quantum integrals on the right side of the above inequality by considering the case when ρ = 0 of Lemma 1, we find that

0 1 1+q ( 1τ )| τ 1 [ 6 ] q | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaqadaqaaiaaigdacqGHsislcqaHepaDaiaawIcacaGLPaaadaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@525E@

=2 0 1 [ 6 ] q τ( 1 [ 6 ] q τ ) 0 d q τ + 0 1 1+q τ( τ 1 [ 6 ] q ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaikdadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiabes8a0naabmaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTiabes8a0bGaayjkaiaawMcaauaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiabgUcaRmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOGaeqiXdq3aaeWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLOaGaayzkaaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaaaa@6739@

=2 q [ 3 ] q [ 6 ] q q 2 [ 2 ] q [ 3 ] q [ 6 ] q 3 + 1 [ 2 ] q 3 ( q+ q 2 [ 3 ] q q 2 +2q [ 6 ] q ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaikdadaWcaaqaaiaadghadaWadaqaaiaaiodaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqGHsislcaWGXbWaaWbaaSqabeaacaaIYaaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaIZaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIZaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGcdaqadaqaamaalaaabaGaamyCaiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaaakeaadaWadaqaaiaaiodaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0YaaSaaaeaacaWGXbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadghaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLOaGaayzkaaGaaGilaaaa@6A7B@

and

0 1 1+q τ| τ 1 [ 6 ] q | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGccqaHepaDdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@4F2D@

=2 0 1 [ 6 ] q τ( 1 [ 6 ] q τ ) 0 d q τ + 0 1 1+q τ( τ 1 [ 6 ] q ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaikdadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakiabes8a0naabmaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTiabes8a0bGaayjkaiaawMcaauaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiabgUcaRmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOGaeqiXdq3aaeWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLOaGaayzkaaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaaaa@6739@

= 2 q 2 [ 2 ] q 2 + [ 6 ] q 2 ( [ 6 ] q [ 3 ] q ) [ 2 ] q 3 [ 3 ] q [ 6 ] q 3 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaaGOmaiaadghadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaGccqGHRaWkdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaGcdaqadaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiabgkHiTmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOGaayjkaiaawMcaaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGccaaIUaaaaa@5D10@

Then, one has the result

0 1 1+q | τ 1 [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ       (20) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabcdacaqGPaaaaa@6971@

| ρ D q χ( ρ ) |[ 2 q [ 3 ] q [ 6 ] q q 2 [ 2 ] q [ 3 ] q [ 6 ] q 3 + 1 [ 2 ] q 3 ( q+ q 2 [ 3 ] q q 2 +2q [ 6 ] q ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5bSlaawIa7amaadmaabaGaaGOmamaalaaabaGaamyCamaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiabgkHiTiaadghadaahaaWcbeqaaiaaikdaaaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiodaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIZaaaaaaakmaabmaabaWaaSaaaeaacaWGXbGaey4kaSIaamyCamaaCaaaleqabaGaaGOmaaaaaOqaamaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaaiaadghadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyCaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@78B2@

+| ρ D q χ( σ ) | 2 q 2 [ 2 ] q 2 + [ 6 ] q 2 ( [ 6 ] q [ 3 ] q ) [ 2 ] q 3 [ 3 ] q [ 6 ] q 3 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaalaaabaGaaGOmaiaadghadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaGccqGHRaWkdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaGcdaqadaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiabgkHiTmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOGaayjkaiaawMcaaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGccaaIUaaaaa@693B@

If similar operations are applied for the other expression in (19), due to the convexity of | ρ D q χ( σ ) |, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7aiaaiYcaaaa@4450@ then one possesses the inequality

1 1+q 1 | τ [ 5 ] q [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ      (21) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaemaabaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqNaeq4WdmNaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaGaeqyWdihacaGLOaGaayzkaaaaaaGaay5bSlaawIa7auaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGXaGaaeykaaaa@6BF2@

| ρ D q χ( ρ ) |{ 2 q [ 5 ] q 2 [ 6 ] q [ 3 ] q q 2 [ 5 ] q 3 [ 2 ] q [ 3 ] q [ 6 ] q 3 + q 2 [ 2 ] q [ 3 ] q q [ 5 ] q [ 2 ] q [ 6 ] q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaceaabaGaaGOmamaalaaabaGaamyCamaadmaabaGaaGynaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaGOmaaaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiabgkHiTiaadghadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaaiwdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiodaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaOGaey4kaSYaaSaaaeaacaWGXbWaaWbaaSqabeaacaaIYaaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaIZaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaamyCamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawUhaaaaa@8055@

1 [ 2 ] q 3 [ ( q 2 +2q ) [ 5 ] q [ 6 ] q q+ q 2 [ 3 ] q ] } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaOWaamWaaeaadaWcaaqaamaabmaabaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGXbaacaGLOaGaayzkaaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaamyCaiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaaakeaadaWadaqaaiaaiodaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLBbGaayzxaaaacaGL9baaaaa@5753@

+| ρ D q χ( σ ) |{ 2 q 2 [ 5 ] q 3 [ 2 ] q [ 3 ] q [ 6 ] q 3 + [ 6 ] q (1+ [ 2 ] q 3 ) [ 3 ] q [ 5 ] q (1+ [ 2 ] q 2 ) [ 2 ] q 3 [ 3 ] q [ 6 ] q }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaacmaabaWaaSaaaeaacaaIYaGaamyCamaaCaaaleqabaGaaGOmaaaakmaadmaabaGaaGynaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaOqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGccqGHRaWkdaWcaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiaaiIcacaaIXaGaey4kaSYaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIZaaaaOGaaGykaiabgkHiTmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiaaiIcacaaIXaGaey4kaSYaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaOGaaGykaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawUhacaGL9baacaaIUaaaaa@83FF@

Substituting the inequalities (20) and (21) in (19), the desired result can be readily attained. Hence, the proof is completed.

Corollary 6 If we take the limit of both sides of (18) as q1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdaaaa@3B28@ , then the inequality (18) yields the result

| 1 6 [ χ( ρ )+4χ( ρ+σ 2 )+χ( σ ) ] 1 ( σρ ) ρ σ χ( τ )dτ | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaiaaigdaaeaacaaI2aaaamaadmaabaGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaacqGHRaWkcaaI0aGaeq4Xdm2aaeWaaeaadaWcaaqaaiabeg8aYjabgUcaRiabeo8aZbqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHsisldaWcaaqaaiaaigdaaeaadaqadaqaaiabeo8aZjabgkHiTiabeg8aYbGaayjkaiaawMcaaaaadaWdXbqabSqaaiabeg8aYbqaaiabeo8aZbqdcqGHRiI8aOGaeq4Xdm2aaeWaaeaacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqhacaGLhWUaayjcSdaaaa@687A@

5( σρ ) 72 [ | χ ' (ρ) |+| χ ' (σ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaI1aWaaeWaaeaacqaHdpWCcqGHsislcqaHbpGCaiaawIcacaGLPaaaaeaacaaI3aGaaGOmaaaadaWadaqaamaaemaabaGaeq4Xdm2aaWbaaSqabeaacaWGNaaaaOGaaGikaiabeg8aYjaaiMcaaiaawEa7caGLiWoacqGHRaWkdaabdaqaaiabeE8aJnaaCaaaleqabaGaam4jaaaakiaaiIcacqaHdpWCcaaIPaaacaGLhWUaayjcSdaacaGLBbGaayzxaaaaaa@561D@

which is Simpson type inequality for functions whose absolute values of derivatives are convex. This result was provided by Alomari, et al. in [1].

We observe how the inequalities come out when we use mappings whose q -derivatives in modulus at certain powers are convex.

Theorem 7 Assume that χ:[ρ,σ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoaiaaiUfacqaHbpGCcaaISaGaeq4WdmNaaGyxaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CAF@  is a q -differentiable function on (ρ, σ) and0 <q < 1. If | ρ D q χ | s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJjaaiYhadaahaaWcbeqaaiaadohaaaaaaa@405D@  is convex and integrable function on [ρ, σ] where s >1 with 1 r + 1 s =1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaamOCaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGZbaaaiaai2dacaaIXaaaaa@3D73@ , then one has the result

| qχ( ρ )+ q 2 [ 4 ] q χ( qρ+σ 1+q )+χ( σ ) [ 6 ] q 1 ( σρ ) ρ σ χ( τ ) ρ d q τ | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaiaadghacqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaaisdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaamaalaaabaGaamyCaiabeg8aYjabgUcaRiabeo8aZbqaaiaaigdacqGHRaWkcaWGXbaaaaGaayjkaiaawMcaaiabgUcaRiabeE8aJnaabmaabaGaeq4WdmhacaGLOaGaayzkaaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaaaamaapehabeWcbaGaeqyWdihabaGaeq4WdmhaniabgUIiYdGccqaHhpWydaqadaqaaiabes8a0bGaayjkaiaawMcaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaacaGLhWUaayjcSdaaaa@74E2@

q( σρ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaaaaa@402E@

×{ ( q 2r [ 4 ] q r [ 2 ] q r+1 [ 6 ] q r ) 1 r ( q 2 +2q [ 2 ] q 3 | ρ D q χ( ρ ) | s + 1 [ 2 ] q 3 | ρ D q χ( σ ) | s ) 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaiqaaeaadaqadaqaamaalaaabaGaamyCamaaCaaaleqabaGaaGOmaiaadkhaaaGcdaWadaqaaiaaisdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhaaaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhacqGHRaWkcaaIXaaaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaWGYbaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaGcdaqadaqaamaalaaabaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGXbaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIZaaaaaaakmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaOWaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaaakiaawUhaaaaa@7EAE@

+ ( [ 2 ] q r+1 [ 5 ] q r q r [ 4 ] q r [ 2 ] q r+1 [ 6 ] q r ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaeWaaeaadaWcaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaamOCaiabgUcaRiaaigdaaaGcdaWadaqaaiaaiwdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhaaaGccqGHsislcaWGXbWaaWbaaSqabeaacaWGYbaaaOWaamWaaeaacaaI0aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaWGYbaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaWGYbGaey4kaSIaaGymaaaakmaadmaabaGaaGOnaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaamOCaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadkhaaaaaaaaa@5A62@

× ( q 3 + q 2 q [ 2 ] q 3 | ρ D q χ( ρ ) | s + q 2 +2q [ 2 ] q 3 | ρ D q χ( σ ) | s ) 1 s }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacqGHxdaTdaqadaqaamaalaaabaGaamyCamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadghadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGXbaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIZaaaaaaakmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGccqGHRaWkdaWcaaqaaiaadghadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyCaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaGcdaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeq4WdmhacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaOGaayzFaaGaaGOlaaaa@6EBB@

Proof. We reconsider the inequality (19). Applying Hölder's inequality to the first integral on the right side of (19), due to the convexity of | ρ D q χ | s , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJjaaiYhadaahaaWcbeqaaiaadohaaaGccaaISaaaaa@411D@  it is found that

0 1 1+q | τ 1 [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@62E0@

( 0 1 1+q | τ 1 [ 6 ] q | r 0 d q τ ) 1 r ( 0 1 1+q | ρ D q χ( τσ+( 1τ )ρ ) | s 0 d q τ ) 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaa0Gaey4kIipakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakuaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaGcdaqadaqaamaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOWaaqWaaeaafaqabeqabaaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHepaDcqaHdpWCcqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHepaDaiaawIcacaGLPaaacqaHbpGCaiaawIcacaGLPaaaaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaaa@794E@

( 0 1 1+q | τ 1 [ 6 ] q | r 0 d q τ ) 1 r ( q 2 +2q ( 1+q ) 3 | ρ D q χ( ρ ) | s + 1 ( 1+q ) 3 | ρ D q χ( σ ) | s ) 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaa0Gaey4kIipakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakuaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamOCaaaaaaGcdaqadaqaamaalaaabaGaamyCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGXbaabaWaaeWaaeaacaaIXaGaey4kaSIaamyCaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGcdaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOGaey4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyCaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaGcdaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeq4WdmhacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaakiaai6caaaa@82DD@

We also observe that

0 1 1+q | τ 1 [ 6 ] q | r 0 d q τ = ( 1q ) 1+q n=0 q n | q n 1+q 1 [ 6 ] q | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadkhaaaGcfaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baacaaI9aWaaSaaaeaadaqadaqaaiaaigdacqGHsislcaWGXbaacaGLOaGaayzkaaaabaGaaGymaiabgUcaRiaadghaaaWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadghadaahaaWcbeqaaiaad6gaaaGcdaabdaqaamaalaaabaGaamyCamaaCaaaleqabaGaamOBaaaaaOqaaiaaigdacqGHRaWkcaWGXbaaaiabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadkhaaaaaaa@6D18@

( 1q ) [ 2 ] q n=0 q n | 1 [ 2 ] q 1 [ 6 ] q | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaadaqadaqaaiaaigdacqGHsislcaWGXbaacaGLOaGaayzkaaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakmaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGccaWGXbWaaWbaaSqabeaacaWGUbaaaOWaaqWaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaaaaa@5823@

= ( 1 [ 2 ] q 1 [ 6 ] q ) r ( 1q ) [ 2 ] q 1 1q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabmaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadkhaaaGcdaWcaaqaamaabmaabaGaaGymaiabgkHiTiaadghaaiaawIcacaGLPaaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaOWaaSaaaeaacaaIXaaabaGaaGymaiabgkHiTiaadghaaaaaaa@50BD@

= q 2r [ 4 ] q r [ 2 ] q r+1 [ 6 ] q r . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaamyCamaaCaaaleqabaGaaGOmaiaadkhaaaGcdaWadaqaaiaaisdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhaaaaakeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhacqGHRaWkcaaIXaaaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaWGYbaaaaaakiaai6caaaa@4C12@

Similarly, using Hölder's inequality for the second integral on the right side of (19), owing to the convexity of | ρ D q χ | s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJjaaiYhadaahaaWcbeqaaiaadohaaaaaaa@405D@ , we find that

1 1+q 1 | τ [ 5 ] q [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaemaabaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqNaeq4WdmNaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaGaeqyWdihacaGLOaGaayzkaaaaaaGaay5bSlaawIa7auaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaaaa@6603@

( 1 1+q 1 | τ [ 5 ] q [ 6 ] q | r 0 d q τ ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaadaWdXbqabSqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqaaiaaigdaa0Gaey4kIipakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaadaWadaqaaiaaiwdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaakeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWGYbaaaOqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGYbaaaaaaaaa@56E6@

× ( | ρ D q χ( ρ ) | s q 3 + q 2 q ( 1+q ) 3 + | ρ D q χ( σ ) | s q 2 +2q ( 1+q ) 3 ) 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOWaaSaaaeaacaWGXbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamyCamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadghaaeaadaqadaqaaiaaigdacqGHRaWkcaWGXbaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaakiabgUcaRmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGcdaWcaaqaaiaadghadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamyCaaqaamaabmaabaGaaGymaiabgUcaRiaadghaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaakiaai6caaaa@6E8E@

We also have

1 [ 2 ] q 1 | τ [ 5 ] q [ 6 ] q | r 0 d q τ = 0 1 | τ [ 5 ] q [ 6 ] q | r 0 d q τ 0 1 [ 2 ] q | τ [ 5 ] q [ 6 ] q | r 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakuaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiaai2dadaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamOCaaaakuaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiabgkHiTmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaabaGaamyCaaqabaaaaaqdcqGHRiI8aOWaaqWaaeaacqaHepaDcqGHsisldaWcaaqaamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadkhaaaGcfaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@878A@

[ 2 ] q r+1 [ 5 ] q r q r [ 4 ] q r [ 2 ] q r+1 [ 6 ] q r . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhacqGHRaWkcaaIXaaaaOWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaWGYbaaaOGaeyOeI0IaamyCamaaCaaaleqabaGaamOCaaaakmaadmaabaGaaGinaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaamOCaaaaaOqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaamOCaiabgUcaRiaaigdaaaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaadkhaaaaaaOGaaGOlaaaa@5875@

Finally, if we substitute the above results in (19), then we obtain the desired inequality.

Theorem 8 Supposing that χ:[ρ,σ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaGOoaiaaiUfacqaHbpGCcaaISaGaeq4WdmNaaGyxaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHifaaa@4CAF@ is a q - differentiable function on (ρ, σ) and0 <q < 1. If | ρ D q χ | s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJjaaiYhadaahaaWcbeqaaiaadohaaaaaaa@405D@  is convex and integrable function on [ρ, σ] where   s ≥1, then one has the result

qχ( ρ )+ q 2 [ 4 ] q χ( qρ+σ 1+q )+χ( σ ) [ 6 ] q 1 ( σρ ) ρ σ χ( τ ) ρ d q τ        (22) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGXbGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaacqGHRaWkcaWGXbWaaWbaaSqabeaacaaIYaaaaOWaamWaaeaacaaI0aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaadaWcaaqaaiaadghacqaHbpGCcqGHRaWkcqaHdpWCaeaacaaIXaGaey4kaSIaamyCaaaaaiaawIcacaGLPaaacqGHRaWkcqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaaiaaigdaaeaadaqadaqaaiabeo8aZjabgkHiTiabeg8aYbGaayjkaiaawMcaaaaadaWdXbqabSqaaiabeg8aYbqaaiabeo8aZbqdcqGHRiI8aOGaeq4Xdm2aaeWaaeaacqaHepaDaiaawIcacaGLPaaafaqabeqabaaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabkdacaqGPaaaaa@78F6@

q( σρ ){ ( 2q [ 2 ] q [ 6 ] q 2 + q 3 [ 3 ] q q [ 6 ] q [ 2 ] q 3 ) 1 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaamyCamaabmaabaGaeq4WdmNaeyOeI0IaeqyWdihacaGLOaGaayzkaaWaaiqaaeaadaqadaqaamaalaaabaGaaGOmaiaadghaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGXbWaaWbaaSqabeaacaaIZaaaaOWaamWaaeaacaaIZaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGaeyOeI0IaamyCaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaOGaay5Eaaaaaa@61BA@

× [ A 1 (q) | ρ D q χ( ρ ) | s + B 1 (q) | ρ D q χ( σ ) | s ] 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamWaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaWaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakiabgUcaRiaadkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeq4WdmhacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaaa@6105@

+ ( 2q [ 5 ] q 2 [ 2 ] q [ 6 ] q 2 + 1 [ 2 ] q [ 5 ] q [ 6 ] q [ 5 ] q [ 2 ] q 2 [ 6 ] q [ 6 ] q [ 2 ] q 3 ) 1 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaeWaaeaacaaIYaGaamyCamaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaGOmaaaakiabgkHiTmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaaa@714F@

× [ A 2 (q) | ρ D q χ( ρ ) | s + B 2 (q) | ρ D q χ( σ ) | s ] 1 s } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaeaacqGHxdaTdaWadaqaaiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamyCaiaaiMcadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOGaey4kaSIaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykamaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaaakiaawUfacaGLDbaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaadohaaaaaaaGccaGL9baaaaa@622E@

where A 1 (q),  A 2 (q),  B 1 (q) and  B 2 (q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaaiYcacaqGGaGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiaaiYcacaqGGaGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaaaa@4E8A@ are defined as in (10)-(13), respectively.

Proof. We consider the inequality (19). Applying power mean inequality to the first integral on the right side of (19), we find that

0 1 1+q | τ 1 [ 6 ] q | 1 1 s | τ 1 [ 6 ] q | 1 s | ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGZbaaaaaakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGcdaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@72F9@

( 0 1 1+q | τ 1 [ 6 ] q | 0 d q τ ) 1 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaa0Gaey4kIipakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7auaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadohaaaaaaaaa@543E@

× ( 0 1 1+q | τ 1 [ 6 ] q | | ρ D q χ( τσ+( 1τ )ρ ) | s 0 d q τ ) 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaeWaaeaadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaa0Gaey4kIipakmaaemaabaGaeqiXdqNaeyOeI0YaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaemaabaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqNaeq4WdmNaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaGaeqyWdihacaGLOaGaayzkaaaaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakuaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGccaaIUaaaaa@6A61@

The operations which have been used in the proof of theorem 5 are applied by considering that | ρ D q χ( τ ) | s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0bGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4Caaaaaaa@44C1@  is convex on [ρ, σ] it is easy to see that

0 1 1+q | τ 1 [ 6 ] q | | ρ D q χ( τσ+( 1τ )ρ ) | s 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGcfaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@640F@

| ρ D q χ( ρ ) | s 0 1 1+q | τ 1 [ 6 ] q |( 1τ ) 0 d q τ + | ρ D q χ( σ ) | s 0 1 1+q | τ 1 [ 6 ] q |τ 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOWaaqWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLhWUaayjcSdWaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaGaey4kaSYaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOWaaqWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLhWUaayjcSdGaeqiXdqxbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaaaa@8713@

= | ρ D q χ( ρ ) | s A 1 (q)+ | ρ D q χ( σ ) | s B 1 (q), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGccaWGbbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaGaey4kaSYaaqWaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabeo8aZbGaayjkaiaawMcaaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakiaadkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyCaiaaiMcacaaISaaaaa@5C89@

where A 1 (q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaaaa@3B9C@ and B 1 (q) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaaaa@3B9D@ are defined as in (10) and (11), respectively. Also, from the definition of quantum integral, we observe that

0 1 1+q | τ 1 [ 6 ] q | 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baaaaa@4D68@

=2 0 1 [ 6 ] q ( 1 [ 6 ] q τ ) 0 d q τ + 0 1 1+q ( τ 1 [ 6 ] q ) 0 d q τ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaaikdadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaqaaiaadghaaeqaaaaaa0Gaey4kIipakmaabmaabaWaaSaaaeaacaaIXaaabaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaakiabgkHiTiabes8a0bGaayjkaiaawMcaauaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiabgUcaRmaapehabeWcbaGaaGimaaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWGXbaaaaqdcqGHRiI8aOWaaeWaaeaacqaHepaDcqGHsisldaWcaaqaaiaaigdaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaaaaaGccaGLOaGaayzkaaqbaeqabeqaaaqaamaaBaaaleaacaaIWaaabeaakiaadsgadaWgaaWcbaGaamyCaaqabaGccqaHepaDaaaaaa@63AF@

= 2q [ 2 ] q [ 6 ] q 2 + q 3 [ 3 ] q q [ 6 ] q ( 1+q ) 3 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaalaaabaGaaGOmaiaadghaaeaadaWadaqaaiaaikdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaiAdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGXbWaaWbaaSqabeaacaaIZaaaaOWaamWaaeaacaaIZaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOGaeyOeI0IaamyCaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaabmaabaGaaGymaiabgUcaRiaadghaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaOGaaGOlaaaa@54C8@

Thus, we obtain the inequality

0 1 1+q | τ 1 [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ       (23) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaaIXaaabaGaaGymaiabgUcaRiaadghaaaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaGaaGymaaqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaaakiaawEa7caGLiWoadaabdaqaauaabeqabeaaaeaadaWgaaWcbaGaeqyWdihabeaakiaadseadaWgaaWcbaGaamyCaaqabaGccqaHhpWydaqadaqaaiabes8a0jabeo8aZjabgUcaRmaabmaabaGaaGymaiabgkHiTiabes8a0bGaayjkaiaawMcaaiabeg8aYbGaayjkaiaawMcaaaaaaiaawEa7caGLiWoafaqabeqabaaabaWaaSbaaSqaaiaaicdaaeqaaOGaamizamaaBaaaleaacaWGXbaabeaakiabes8a0baacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabodacaqGPaaaaa@6974@

( 2q [ 2 ] q [ 6 ] q 2 + q 3 [ 3 ] q q [ 6 ] q [ 2 ] q 3 ) 1 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaadaWcaaqaaiaaikdacaWGXbaabaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaamyCamaaCaaaleqabaGaaG4maaaakmaadmaabaGaaG4maaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakiabgkHiTiaadghaaeaadaWadaqaaiaaiAdaaiaawUfacaGLDbaadaWgaaWcbaGaamyCaaqabaGcdaWadaqaaiaaikdaaiaawUfacaGLDbaadaqhaaWcbaGaamyCaaqaaiaaiodaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaam4Caaaaaaaaaa@59A7@

× [ | ρ D q χ( ρ ) | s A 1 (q)+ | ρ D q χ( σ ) | s B 1 (q) ] 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aamWaaeaadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOGaamyqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGccaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadghacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaakiaai6caaaa@61C7@

Similarly, for the second integral on the right side of (19), we have

1 1+q 1 | τ [ 5 ] q [ 6 ] q || ρ D q χ( τσ+( 1τ )ρ ) | 0 d q τ       (24) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqaleaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaamyCaaaaaeaacaaIXaaaniabgUIiYdGcdaabdaqaaiabes8a0jabgkHiTmaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaGcbaWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaaaaaOGaay5bSlaawIa7amaaemaabaqbaeqabeqaaaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqiXdqNaeq4WdmNaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaGaeqyWdihacaGLOaGaayzkaaaaaaGaay5bSlaawIa7auaabeqabeaaaeaadaWgaaWcbaGaaGimaaqabaGccaWGKbWaaSbaaSqaaiaadghaaeqaaOGaeqiXdqhaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeinaiaabMcaaaa@6C98@

( 2q [ 5 ] q 2 [ 2 ] q [ 6 ] q 2 + 1 [ 2 ] q [ 5 ] q [ 6 ] q [ 5 ] q [ 2 ] q 2 [ 6 ] q [ 6 ] q [ 2 ] q 3 ) 1 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaeWaaeaacaaIYaGaamyCamaalaaabaWaamWaaeaacaaI1aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaGcbaWaamWaaeaacaaIYaaacaGLBbGaayzxaaWaaSbaaSqaaiaadghaaeqaaOWaamWaaeaacaaI2aaacaGLBbGaayzxaaWaa0baaSqaaiaadghaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaamaadmaabaGaaGOmaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaaGccqGHsisldaWcaaqaamaadmaabaGaaGynaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaGOmaaaakiabgkHiTmaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaaaOqaamaadmaabaGaaGOnaaGaay5waiaaw2faamaaBaaaleaacaWGXbaabeaakmaadmaabaGaaGOmaaGaay5waiaaw2faamaaDaaaleaacaWGXbaabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaaa@7222@

[ | ρ D q χ( ρ ) | s A 2 (q)+ | ρ D q χ( σ ) | s B 2 (q) ] 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadaabdaqaamaaBaaaleaacqaHbpGCaeqaaOGaamiramaaBaaaleaacaWGXbaabeaakiabeE8aJnaabmaabaGaeqyWdihacaGLOaGaayzkaaaacaGLhWUaayjcSdWaaWbaaSqabeaacaWGZbaaaOGaamyqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGXbGaaGykaiabgUcaRmaaemaabaWaaSbaaSqaaiabeg8aYbqabaGccaWGebWaaSbaaSqaaiaadghaaeqaaOGaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadohaaaGccaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadghacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaakiaai6caaaa@5FB2@

Should we substitute the inequalities (23) and (24) in (19), and we then capture the desired result which finishes the proof.

Corollary 9 If we take the limit of both sides of (22) as q1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgkziUkaaigdaaaa@3B28@ , then the inequality (22) reduces to the result

| 1 6 [ χ( ρ )+4χ( ρ+σ 2 )+χ( σ ) ] 1 ( σρ ) ρ σ χ( τ )dτ | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaadaWcaaqaaiaaigdaaeaacaaI2aaaamaadmaabaGaeq4Xdm2aaeWaaeaacqaHbpGCaiaawIcacaGLPaaacqGHRaWkcaaI0aGaeq4Xdm2aaeWaaeaadaWcaaqaaiabeg8aYjabgUcaRiabeo8aZbqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaeq4Xdm2aaeWaaeaacqaHdpWCaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHsisldaWcaaqaaiaaigdaaeaadaqadaqaaiabeo8aZjabgkHiTiabeg8aYbGaayjkaiaawMcaaaaadaWdXbqabSqaaiabeg8aYbqaaiabeo8aZbqdcqGHRiI8aOGaeq4Xdm2aaeWaaeaacqaHepaDaiaawIcacaGLPaaacaWGKbGaeqiXdqhacaGLhWUaayjcSdaaaa@687A@

1 ( 1296 ) 1 s ( 5 72 ) 1 1 s ( σρ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaSaaaeaacaaIXaaabaWaaeWaaeaacaaIXaGaaGOmaiaaiMdacaaI2aaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGZbaaaaaaaaGcdaqadaqaamaalaaabaGaaGynaaqaaiaaiEdacaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadohaaaaaaOWaaeWaaeaacqaHdpWCcqGHsislcqaHbpGCaiaawIcacaGLPaaaaaa@4DF7@

×{ [ 61 | χ ' (ρ) | s +29 | χ ' (σ) | s ] 1 s + [ 29 | χ ' (ρ) | s +61 | χ ' (σ) | s ] 1 s } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaiWaaeaadaWadaqaaiaaiAdacaaIXaWaaqWaaeaacqaHhpWydaahaaWcbeqaaiaadEcaaaGccaaIOaGaeqyWdiNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakiabgUcaRiaaikdacaaI5aWaaqWaaeaacqaHhpWydaahaaWcbeqaaiaadEcaaaGccaaIOaGaeq4WdmNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaaaOGaay5waiaaw2faamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaGccqGHRaWkdaWadaqaaiaaikdacaaI5aWaaqWaaeaacqaHhpWydaahaaWcbeqaaiaadEcaaaGccaaIOaGaeqyWdiNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaakiabgUcaRiaaiAdacaaIXaWaaqWaaeaacqaHhpWydaahaaWcbeqaaiaadEcaaaGccaaIOaGaeq4WdmNaaGykaaGaay5bSlaawIa7amaaCaaaleqabaGaam4CaaaaaOGaay5waiaaw2faamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam4CaaaaaaaakiaawUhacaGL9baaaaa@748A@

which was presented by Alomari, et al. in [3].

Conclusion

In this work, Simpson-type quantum integral inequalities found to be incorrect by Tunç were corrected. New and correct quantum integral inequalities were thus developed by using mappings whose absolutes value of q -derivatives are convex. Also, relations between special cases of these results and inequalities given in the earlier works are observed. Also, this paper describes how to find quantum integral inequalities for convex functions.

The authors would like to thank the editor and the referees for their helpful suggestions and comments, which have greatly improved the presentation of this paper.

Author contributions

The authors declare that the study was realized in collaboration with the same responsibility.

Availability of data and material

Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current research.

  1. Alomari MW, Darus M, Dragomir SS. New inequalities of Simpson's type for s-convex functions with applications. RGMIA Res Rep Coll. 2009;12(4)9. https://rgmia.org/papers/v12n4/Simpson.pdf
  2. Dragomir SS, Agarwal RP, Cerone P. On Simpson's inequality and applications. J Inequal Appl. 2000;5:533-579. https://rgmia.org/papers/v2n3/Simpsurv.pdf
  3. Sarikaya MZ, Set E, Özdemir ME. On new inequalities of Simpson's type for convex functions. RGMIA Res Rep Coll. 2010;13(2)2. https://doi.org/10.1016/j.camwa.2010.07.033
  4. Sarikaya MZ, Budak H, Erden S. On new inequalities of Simpson's type for generalized convex functions. Korean J Math. 2019;27(2):279-295. http://dx.doi.org/10.11568/kjm.2019.27.2.279
  5. Liu Z. An inequality of Simpson type. Proc Royal Soc A Math Phys Eng Sci. 2005;461(2059):2155-2158. https://www.sciepub.com/reference/162832
  6. Erden S, Iftikhar S, Delavar RM, Kumam P, Thounthong P, Kumam W. On generalizations of some inequalities for convex functions via quantum integrals. Rev Real Acad Cienc Exactas Fisicas Naturales. 2020;114(3):1–15. doi:10.1007/s13398-020-00841-3. https://link.springer.com/article/10.1007/s13398-020-00841-3
  7. Ernst T. A comprehensive treatment of -calculus. Basel: Springer; 2016.
  8. Ernst T. A method for -calculus. J Nonlinear Math Phys. 2003;10(4):487-525.
  9. Ernst T. The history of -calculus and new method. Uppsala: Department of Mathematics, Uppsala University; 2000.
  10. Gauchman H. Integral inequalities in -calculus. Comput Math Appl. 2004;47:281-300.
  11. Jackson FH. On a -definite integrals. Quart J Pure Appl Math. 1910;41:193-203.
  12. Kac V, Cheung P. Quantum calculus. New York: Springer; 2002.
  13. Agarwal R. A propos d'une note de M. Pierre Humbert. Reports from the Academy of Sciences. 1953;236(21):2031-2032.
  14. Al-Salam W. Some fractional q-integrals and q-derivatives. Proc Edinburgh Math Soc. 1966/1967;15(2):135–40. https://doi.org/10.1017/S0013091500011469
  15. Tariboon J, Ntouyas SK. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv Difference Equ. 2013;2013:282:19. http://dx.doi.org/10.1186/1687-1847-2013-282
  16. Alp N, Sarikaya MZ, Kunt M, Iscan I. Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci. 2018;30:193-203.
  17. Noor MA, Noor KI, Awan MU. Some quantum estimates for Hermite-Hadamard inequalities. Appl Math Comput. 2015;251:675-679. http://dx.doi.org/10.1016/j.amc.2014.11.090
  18. Noor MA, Noor KI, Awan MU. Some quantum integral inequalities via preinvex functions. Appl Math Comput. 2015;269:242-251. http://dx.doi.org/10.1016/j.amc.2015.07.078
  19. Noor MA, Noor KI, Awan MU. Quantum Ostrowski inequalities for -differentiable convex functions. J Math Inequal. 2016;10:1013-1018.
  20. Budak H, Erden S, Ali MA. Simpson and Newton-type inequalities for convex functions via newly defined quantum integrals. Math Methods Appl Sci. 2021;44(1):378-390. https://doi.org/10.1002/mma.6742
  21. Tunç M, Göv E, Balgeçti S. Simpson type quantum integral inequalities for convex functions. Miskolc Math Notes. 2018;19:649-664. http://dx.doi.org/10.18514/MMN.2018.1661
  22. Tariboon J, Ntouyas SK. Quantum integral inequalities on finite intervals. J Inequal Appl. 2014;2014:121:13. https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2014-121
  23. Jackson FH. -Difference equations. Amer J Math. 1910;32(4):305-314.
 

Help ?